
1

Predicting the Tomorrow of the Financial
World with Time Series Prediction

Research Question: How can the value of a cryptocurrency be

predicted with time series analysis?

Word count: 3134

2

Table of Contents
1. Introduction .. 3

1.1 Feed Forward Neural Networks ... 3

1.2 Universal Approximation Theorem .. 4

1.3 Gradient Descent .. 7

1.3.a Gradient Descent (Basic) .. 7

1.3.b Stochastic Gradient Descent... 8

2. Preparation of Input .. 10

2.1 Acquiring the Data.. 10

2.2 Measurement of Error ... 10

2.3 Normalization of Input Data ... 11

3. Proposing an Optimal Model to Predict Trends ... 13

3.1 Diving into Universal Approximation Theorem .. 13

3.2 Learning from the Errors .. 14

3.3 Learning from the Errors on Feedforward Networks ... 15

4. Methodology ... 17

4.1 (Computational) Experimentation Method ... 17

4.2 Accuracy of the Results .. 17

5. Conclusion .. 18

Bibliography ... 20

Appendix .. 21

3

1. Introduction

Predicting the outcome of well-developed markets such as the stock market using

mathematics, more specifically time series prediction, has already been researched

extensively in the past, well before neural networks started to become commonplace.

Cryptocurrency values also behave like stock markets, their values change in a complex

and volatile manner; making the market a highly volatile and hard to predict thing where

trends change very rapidly. By utilizing the power of the Universal Approximation

Theorem and a gradient based learning error-correcting algorithm, I aim to demonstrate

that a mathematical model can be built to predict the financial world throughout this

essay. Thus, to justify my method for answering the research question, I will create and

use a mathematics based neural network.

1.1 Feed Forward Neural Networks

 At the most basic level, Artificial Neural Networks (ANNs) are computer systems

that utilize a brain-like structure consisting of two components, the neurons (nodes where

the processes take place) and the synapses (paths/connections via which data is

transferred). There are input, hidden/processing, and output nodes. The input nodes are

where data is entered, the processing (hidden) nodes create the hidden layers of the neural

network where data processing takes place, and the output nodes show the decision made

by the Neural Network. At every layer of the Neural Network, nodes transmit information

to every node in the following layer. The connections between the nodes are called

“weights” (also referred as synaptic weights). They are the factors optimized as the Neural

Network works.

4

The simple Neural Network example in

Figure 1 consists of 3 layers; there is 1 input, 1

hidden and 1 output layer. The input layer has 3

nodes, the hidden layer has 4 nodes, and the output

layer has 2 nodes. In addition to the nodes, layers

may contain biases, which are constant values that

can used to offset the layer output. However, in

multi layered neural networks, all of the weight

parameters connecting to a neuron may enable that

neuron to function as a bias, if they gravitate

towards zero; due to the range of value 0 in sigmoid

function (Figure2), which is 0.5. Thus, in complex

neural netwoks such as the one that will be created

here to predict stock prices, hidden neuron layers are

only used as checkpoints where the calculations or

processes take place. The weights are the most

crucial components in the system, they adjust the

total effect an input has on the output (this will be

further investigated in section 3.3).

1.2 Universal Approximation Theorem

When the standard mathematical prediction techniques such as the expected value

used in probability and statistics are not applicable, Universal Approximation Theorem

comes into play. The theorem states that given enough training data and computational

Figure 1; Example Neural
Network

Figure 2; The Sigmoid Function

5

resources, a neural network with weighted connections (to be investigated in detail later)

can approximate any function with normalized inputs and outputs (input in range [0,1] in

Rm, and output in range [0,1] in Rn) perfectly, given that they are continuous, varying,

and bounded. This theorem was proven by the George Cybenko in 1989 for sigmoid

activation (Figure 2) (the equation of the sigmoid function will be given in section 2.3)

functions and plays a huge role in the field of artificial intelligence.

To elaborate on the theorem, I will introduce the proof using the common names

for the parameters: 𝑤𝑤𝑛𝑛 for weight and bn for bias, where the weight parameter straightens

and bias horizontally moves the graph. Like that in the original proof, the sigmoid

function will be used as non-linear activation function.

In Figure 3, by extensively increasing the 𝑤𝑤 parameter an edgy S figure was

created. Now, we will subtract two graphs after adding one more weight and one more

bias (s parameter stands for b in Figure 4 and Figure 5), then introduce 𝑤𝑤1 and 𝑤𝑤2, new

synaptic weights. These new parameters will account for the weight of height addition.

Figure 3; An example network

6

Their height, when added, reaches 1 in vertical axis

And here 𝑤𝑤1 was enough to make the graph reach 0.8 in vertical axis, while 𝑤𝑤2

makes the value reach the ground state by adding a graph which has -0.8 height weight.

Now we formed a rectangle which is just enough to prove the theorem. By adding infinite

layers and infinite neurons one can create any function using the Riemann summation

method. So the magic is determining the weight parameters as bias difference converges

to zero -so we did not us the biases, and that is made by gradient descent.

Figure 4; An example of addition

Figure 5; An example of substraction

7

1.3 Gradient Descent

1.3.a Gradient Descent (Basic)

 First, to be able to talk about such prediction techniques we need to

introduce the gradient descent method. In basic gradient descent the goal is to to avoid

the bad minima phenomenon (the maxima is not mentioned because the technique is

vastly used to determine the minimum error value) which will be mentioned again (in

topic 3.2), by slowly getting closer to the minimum. Graphic of such a method looks like

this:

The learning rate matters because when it is too high, the minimum may be missed

and when it is too low, a bad minima can be reached.

The solution here is starting with a high learning rate and gradually decreasing it.

I will now introduce the formula and then explain it in order to clarify.

Figure 6; Basic Gradient Descent Example

Figure 7; Gradient Descent Limitations

8

𝑎𝑎0 − ��𝜕𝜕𝜕𝜕(𝑎𝑎0)
𝜕𝜕𝑎𝑎0

� × 𝜔𝜔� = 𝑎𝑎1,

Where 𝑎𝑎0 is a random number, accounted by supervisor (computer or the user),

and, 𝜔𝜔 is the leaning rate. This should be applied to 𝑎𝑎𝑛𝑛 until 𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑘𝑘+1, then it becomes

safe to assume that a solution has been reached.

Now in order to clear vague points, further explanations about the process will be

made. We calculate the derivation of the point 𝑎𝑎𝑛𝑛 to find its slope and then multiply it our

learning rate “𝜔𝜔”. Learning rate adjusts the significance of the derivations while reaching

the point 𝑎𝑎𝑛𝑛+1. Since the value of slope in a point near to minima will be less than a

point far from it in a continuous function, it will take more steeps to travel the same

distance so the learning rate also determines the speed of the algorithm by adjusting the

number of steps to reach the outcome. Then we subtract the result of equation

“�𝜕𝜕𝜕𝜕(𝑎𝑎𝑛𝑛)
𝜕𝜕𝑎𝑎𝑛𝑛

� × 𝜔𝜔” from our the initial point “𝑎𝑎𝑛𝑛” we reach our next point. When there are

no changes in the outcomes of following steps (𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘+2) we can suggest that

the minimum is reached because the derivation reached zero.

1.3.b Stochastic Gradient Descent

 Normal/basic gradient descent is pretty useful when working with one variable,

but it becomes problematic once multiple variables are introduced. Because almost

always three or more dimensional graphs are used in computational sciences, basic

gradient descent is not very popular, the stochastic gradient descent is usually preferred.

The main difference between them, when two or more variables are introduced, is; the

basic one changes both the parameters at the same step while stochastic do not. Below,

9

there is an example of how both algorithms work. Assume that we have two variables 𝑥𝑥

and 𝑘𝑘, where possible values of 𝑘𝑘 are determined as {1,2,3} ;

Basic Gradient Descent

𝑥𝑥0 − ��
𝜕𝜕𝜕𝜕(𝑥𝑥0, 1)
𝜕𝜕𝑥𝑥0

� × 𝜔𝜔� = 𝑥𝑥1

𝑥𝑥1 − ��
𝜕𝜕𝜕𝜕(𝑥𝑥1, 2)
𝜕𝜕𝑥𝑥1

� × 𝜔𝜔� = 𝑥𝑥2

𝑥𝑥2 − ��
𝜕𝜕𝜕𝜕(𝑥𝑥2, 3)
𝜕𝜕𝑥𝑥2

� × 𝜔𝜔� = 𝑥𝑥3

Main problem here if any of the determined values -{1,2,3} in the example- is an

outlier, the chain of calculations in the iterative process will greatly influence the result

in a bad way. To avoid that, stochastic gradient descent is used, where the results do not

have a direct effect like that in the basic one. To exemplify this, I will use stochastic

gradient descent for the same scenario;

Stochastic Gradient Descent

�
𝜕𝜕𝜕𝜕(𝑥𝑥0, 1)
𝜕𝜕𝑥𝑥0

� × 𝜔𝜔 = 𝑎𝑎1

�
𝜕𝜕𝜕𝜕(𝑥𝑥0, 2)
𝜕𝜕𝑥𝑥0

� × 𝜔𝜔 = 𝑎𝑎2

�
𝜕𝜕𝜕𝜕(𝑥𝑥0, 3)
𝜕𝜕𝑥𝑥0

� × 𝜔𝜔 = 𝑎𝑎3

𝑥𝑥0 − (𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3) = 𝑥𝑥1

In neural networks, such functions are used to determine and fix synaptic weights,

where synaptic weight is the importance of the connection (this will be further discussed

10

in topics 3.2 and 3.3). Just like an 𝜕𝜕(𝑥𝑥) function can be used to do calculations, an error

function is being used to calibrate the neural network (to be introduced in section 2.2),

which enables us to find the deviation of our predictions.

2. Preparation of Input

2.1 Acquiring the Data

We will acquire our data from “coinmarketcap.com” [5] which averages the price

of each coin on different markets. Our data contains the price of bitcoin for every 15

minutes between 2016-11-03 05:00 and 2017-12-07 22:30; this gives us exactly 38375

data points.

We will use the domain ℱ to indicate this data where ℱ0 is the price at 2016-11-

03 05:00, ℱ1 is the price at 2016-11-03 05:15 and so on.

2.2 Measurement of Error

We will be using root mean square error to calculate our errors throughout our

experiments. 𝜕𝜕(𝑡𝑡) being the real values and the 𝜕𝜕(𝑡𝑡) being our Predictions Root Mean

Square error (rms) can be calculated as following over the domain A:

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 =
1

𝑛𝑛(𝐴𝐴)
��𝜕𝜕(𝑥𝑥) − 𝜕𝜕(𝑥𝑥)�

2

𝑥𝑥 ∈𝐴𝐴

11

2.3 Normalization of Input Data

The method we will be using involves the Universal Approximation Theorem, so

we need our input values to be normalized between 0-1. A simple min max normalization

like shown below could be used:

ℱ𝑥𝑥 ∶=
ℱ𝑥𝑥 − minℱ

maxℱ − minℱ

However, given that the price of cryptocurrencies make dramatic changes over

months this means that we will be wasting most of our domain range on values that will

never be relevant again.

An example to this problem can be shown on the graph above (Graph 1) which

contains the normalized price information for bitcoin from dates 12/03/2017 to

12/08/2017. We can see that the values stay in the 0.7-1.0 range, this means that more

precise weight changes will be required to find a working solution compared to a case

where the values would always be spread throughout the domain.

Because of this, we will instead be using a different method to normalize the input.

Graph 1; Normalized data of 5 Months

12

ℱ𝑥𝑥 ∶= 𝜎𝜎 �
ℱ′𝑥𝑥 − 𝐸𝐸(ℱ′𝑥𝑥)

𝑚𝑚
�

What we did in the equation above is; at first we calculated the numerical derivations of

points depending on the Graph1. Then we substracted the our point derivation from

average derivation value to find the derivation of our point. Then we devided our value

to a big number “𝑚𝑚” , such as 50, to avoid monotoncity wen it is applied to sigmoid

function -defined below. At last we apply it to the sigmoid function becouse it’s range is

only defined in [0,1], which is essential utilizing the Universal Approximation Theorem

Sigmoid Function

𝜎𝜎(𝑥𝑥) =
1

𝑒𝑒−𝑥𝑥 + 1

As we can see, the values are clearly more spread over the domain this time and

will stay relevant no matter how big the change in the price is due to the utilization of

derivations.

Graph 2; Processed Normalization of data

13

3. Proposing an Optimal Model to Predict Trends

3.1 Diving into Universal Approximation Theorem

To apply Universal Approximation Theorem to our use case, we first need to build

a feed forward network with weights.

A feed forward network can be basically thought of as a multi-variable function

with normalized inputs and outputs with an arbitrary number of layers and units per layer.

Each unit in these layers have “learned” weights for each unit in the previous layer. The

value of a unit is equal to the weighted sum of the values from the previous layer, activated

by an activation function, the sigmoid function.

The value of the nth unit in the mth layer, where 𝑤𝑤(𝑟𝑟−1)𝑘𝑘→𝑟𝑟𝑛𝑛 is the weight

connection from 𝑘𝑘th unit (neuron) of (𝑚𝑚− 1)th layer to nth unit of the mth layer, can be

represented like the following (with the exception of the input layer which will be

normalized input values):

𝑥𝑥𝑟𝑟𝑛𝑛 = 𝜎𝜎 ��𝑤𝑤(𝑟𝑟−1)𝑘𝑘→𝑟𝑟𝑛𝑛 𝑥𝑥(𝑟𝑟−1)𝑘𝑘
𝑘𝑘

�

The multi-layered nature of this function with weights which can be thought of as

“importance” of the value for the next unit, gives the networks the ability to be universal

approximators for any kind of function, which makes them an important tool in our toolkit

with the aim of predicting the trends in a volatile and hard to predict market.

14

3.2 Learning from the Errors

These networks however, are not magic 8-balls like one might be inclined to think

after their description. The perfect approximation can be only achieved with the perfect

values for the weights, which we have to somehow “learn” from our dataset.

This is where we let the network learn from its mistakes. The weights are initially set to

random numbers between -1 and +1, and each data point in our dataset is fed into the

function, error gets calculated and the weights get adjusted based on the gradient of error

in relation to its value.

A simple method to achieve this can be proposed based on the example figure

above (Graph 3) where the error is 𝑥𝑥2s. We can see that the gradient of error, 2𝑥𝑥 , gives

us information about both the direction the value of x has to change towards and the

magnitude of error.

Graph 3; Error and Error Gradient

Graph 4; Error and Error Gradient

15

Yet, a more complex error plane like the polynomial 𝑥𝑥4 + 5𝑥𝑥3 + 5𝑥𝑥2 − 5𝑥𝑥 − 6,

is considered, it is easy to notice the pitfalls of this method. The error gradient guides to

the local minima and not the global minima, so the error rates might never reach perfect

levels like we desire it to and we might get stuck on a “bad minima” simply because of

our random starting point.

This effect is less pronounced when the fact that the error plane is N-dimensional

is considered, however because of this we must repeat our experiments multiple times

and pick weight matrices that produce the most optimal network.

Given the error function 𝐸𝐸, we will be updating the weights like shown below

where 𝜔𝜔 stands for the “learning rate”:

𝑤𝑤𝑥𝑥𝑥𝑥 ≔ 𝑤𝑤𝑥𝑥𝑥𝑥 − 𝜔𝜔
𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑥𝑥𝑥𝑥

We need the 𝜔𝜔 multiplier, a numerically small hyper-parameter, to make sure we

do not make dramatic changes in weight values just on one data-point. This will be

preventing the “memorization” of the input values and make sure our solution can be

generalized to future input.

3.3 Learning from the Errors on Feedforward Networks

We can now combine both of these techniques to build a mathematical model that

can “learn” to accurately approximate an arbitrary function. We use the error function we

chose before to “judge” how accurate the prediction of the network was. This function

will be represented as below where x stands for the input, W for the weight tensor and 𝜕𝜕

for our approximator.

16

𝐸𝐸(𝑥𝑥,𝑊𝑊) = �𝜕𝜕(𝑥𝑥,𝑊𝑊) − 𝜕𝜕(𝑥𝑥)�
2

Just for the examples sake, let’s assume it is a three-layered network, like the one

we will be using, and that the 𝑣𝑣𝑛𝑛 is the nth unit in the last layer, 𝑘𝑘𝑛𝑛 is the nth unit in the

middle layer, and 𝑖𝑖𝑛𝑛 is the nth input.

Each unit in the network has an amount of “blame” they hold in error made. The

gradient of the last layer is pretty straightforward:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑛𝑛

= 2(𝑣𝑣𝑛𝑛 − 𝜕𝜕𝑛𝑛(𝑥𝑥))

As for the units in the middle layer this can be calculated like the following:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑘𝑘𝑛𝑛

= �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑎𝑎

𝜕𝜕𝑣𝑣𝑎𝑎
𝜕𝜕𝑘𝑘𝑛𝑛𝑎𝑎

= �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑎𝑎

𝜕𝜕
𝜕𝜕𝑘𝑘𝑛𝑛𝑎𝑎

�𝜎𝜎 ��𝑤𝑤𝑘𝑘𝑟𝑟→𝑣𝑣𝑎𝑎 𝑘𝑘𝑟𝑟
𝑟𝑟

��

= �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑎𝑎

𝜎𝜎′ ��𝑤𝑤𝑘𝑘𝑟𝑟→𝑣𝑣𝑎𝑎 𝑘𝑘𝑟𝑟
𝑟𝑟

�𝑤𝑤𝑘𝑘𝑛𝑛→𝑣𝑣𝑎𝑎
𝑎𝑎

Later on we can apply the chain rule again to find the gradient for the weights like

demonstrated below which we use to update the network.

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑘𝑘𝑎𝑎→𝑣𝑣𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑛𝑛

𝜕𝜕𝑣𝑣𝑛𝑛
𝜕𝜕𝑣𝑣𝑘𝑘𝑎𝑎𝑣𝑣𝑛𝑛

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑛𝑛

𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑎𝑎→𝑣𝑣𝑛𝑛

�𝜎𝜎 ��𝑤𝑤𝑘𝑘𝑟𝑟→𝑣𝑣𝑛𝑛 𝑘𝑘𝑟𝑟
𝑟𝑟

��

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑣𝑣𝑛𝑛

𝜎𝜎′ ��𝑤𝑤𝑘𝑘𝑟𝑟→𝑣𝑣𝑛𝑛 𝑘𝑘𝑟𝑟
𝑟𝑟

� 𝑘𝑘𝑎𝑎

17

4. Methodology

4.1 (Computational) Experimentation Method

We used a 3-layer feed-forward network for our predictions with 10 units of input,

10 units in the middle layer and a single output. The input layer will contain normalized

information about the price changes on last 5 data-points on the 15-minute, 3 on the daily

and 2 on the monthly graph. This lets the network predict the changes both on short-term

trends and on long-term ones.

The dataset was split into two equal pieces, a training and a testing dataset, to

make sure the network is capable of generalizing the learned information into the future.

𝜔𝜔 was chosen as 0.0001. The training phase was done by going through the entire training

dataset, updating the weights, shuffling the dataset and repeating this process 120 times.

To perform such computational actions, we used a programming language called

python, which is the most popular language for creation of AIs. Additionally, to perform

fundamental mathematical actions we used a library called NumPy (see Appendix for

calculations).

4.2 Accuracy of the Results

The accumulated root-mean-square error hit 0 on the training dataset and 0.16 on

the test dataset.

18

As we can see from the figure above (Graph 5), the network is quite capable of

predicting seemingly random trends in the price changes. Proving that our predictions are

able to fulfil our aim determined by the research question, and thus, our method is an

answer for the research question.

5. Conclusion

Our research is made for the prediction of bitcoin (BTC) however; such a model

can be used for predicting any type of cryptocurrency. So, anyone wanting to calculate

any type of currency, only by changing the input data, can use this feed forward network

to predict the future value of desired currency. Furthermore, this model is not restricted

by predicting the crypto-currencies. Anything, which can be expressed with an error

function can be calculated/predicted with this model.

Main areas of neural networks (ANN) are image processing and forecasting.

Image processing is mainly about recognition and identification of shapes, paintings,

objects and handwritings. They are usually applied for security assessments, such as

detection of fraud attempts. Forecasting, what we attempt to do in this essay, is being

Graph 5; Comparison of Predictions and Real Values

19

used and required in daily business decision in stock market and rest of the financial

world. For both of the areas, there are certain types of neural networks that are used more

extensively.

What makes this search special is usage of this type of network to make time series

prediction. Usually, Feed Forward Neural Networks (FFNNs) are used for tasks which

requires processing visual inputs, such as facial recognition. Recurrent Neural Networks

(RNNs) are the popular models for such prediction. Main difference between those relies

under the input value. FFNNs use only the determined variable, as we utilized the value

of BTC in an accounted time, while RNNs use both the determined variable and the

outcome of the previous calculation. For example, to perform a prediction, a FFNN uses

only the data of 2017-11-03 05:15 to predict the value of 2017-11-03 05:30, but a RNN

would use the data of 2016-11-03 05:15 and all the predictions made, for the possible

values, starting at 2016-11-03 05:15 (first prediction) to 2016-11-03 05:15 (last prediction

to that time). Thus, by adapting the Feed Forward model to time series prediction, we are

able to make market value predictions with insufficient data.

Although it is proven to be an effective model, in further researches it can be

improved. Our model is based on the Universal Approximation Theorem as many others

and as mentioned this theorem suggests that any graph can be modeled using infinite

neurons and infinite layers. However, we used three layers and 10/10/1, neurons as

mentioned at section 3.1. So if the number of layers or neurons or both is increased then

the output can be more accurate.

20

Bibliography

[1] I. K. a. M. Boydb, “Designing a neural network for forecasting financial and

economic time series,” Neurocomputing, vol. X, no. 3, pp. 215-236, 1996.
[2] T. Kimoto, K. Asakawa, M. Yoda and M. Takeoka, “Stock market prediction

system with modular neural networks,” in IJCNN International Joint Conference
on Neural Networks, 1990.

[3] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2.4, pp. 303-314, 1989.

[4] Nielsen, and Michael A. “Neural Networks and Deep Learning.” Neural Networks
and Deep Learning, Determination Press, 1 Jan. 1970,
neuralnetworksanddeeplearning.com/chap4.html.

[5] “Bitcoin (BTC) Price, Charts, Market Cap, and Other Metrics.” CoinMarketCap,
coinmarketcap.com/currencies/bitcoin/

21

Appendix

Computational experimentation, made in Python

22

23

24

25

26

	1. Introduction
	1.1 Feed Forward Neural Networks
	1.2 Universal Approximation Theorem
	1.3 Gradient Descent
	1.3.a Gradient Descent (Basic)
	1.3.b Stochastic Gradient Descent

	2. Preparation of Input
	2.1 Acquiring the Data
	2.2 Measurement of Error
	2.3 Normalization of Input Data

	3. Proposing an Optimal Model to Predict Trends
	3.1 Diving into Universal Approximation Theorem
	3.2 Learning from the Errors
	3.3 Learning from the Errors on Feedforward Networks

	4. Methodology
	4.1 (Computational) Experimentation Method
	4.2 Accuracy of the Results

	5. Conclusion
	Bibliography
	Appendix

