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1. Introduction 

 

Personal Engagement 

For unknown reasons that trouble scientists like my mother to this day, I have always 

been passionate STEM enthusiast, especially taking an interest in Astrophysics. A big concept 

that has always interested me in physics has been waves. As phenomena we learn at young 

ages, they seem like they should not create such ambiguities in people’s minds. They have 

always troubled me, since at first glance do not seem like important phenomena. After 

learning about their importance in physics, they became a huge interest for me. From 

explaining the states of subatomic particles to having gravitational waves, waves really seem 

like a gift from existence. Standing waves are very interesting in their own ways. For things 

that require very special conditions to take place, they seem to play too big of a role in 

existence itself. 

 After deciding to investigate standing waves for my Extended Essay, I found that 

resonance can be quite an important thing in engineering because of its dual nature of both 

demolishing and building. I decided to investigate this topic further and then decided that this 

was the thing that interested me. Throughout this investigation, I did not only focus on 

learning how to write a scientific paper but also tried to follow my curiosity into the wonders 

of the universe. 
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2. Background Information 

Principles of Waves 

A disturbance that propagates through a medium that transfers energy without a net 

movement of the particles that are in it is called a wave. Mechanical waves that travel through 

mediums require the presence of a material medium, like a string. These mechanical waves 

can be classified into two main types: 

Transverse waves, where the displacement of the particles is perpendicular to the direction of 

wave propagation such as waves that propagate in a string 1. 

Longitudinal waves, where the displacement of the particles is parallel to wave propagation 

such as sound waves 2. 

The fundamental properties of a wave can be expressed through the following equation: 

𝑣 = 𝑓𝜆 

Where: 

• 𝑣 is the wave’s velocity, 

• 𝑓 is the wave’s frequency, 

• 𝜆 is the wave’s wavelength3. 

The velocity of a mechanical wave is dependent on the medium’s properties. In the case of a 

vibrating string, the speed is affected by two leading properties: 

 
1
 Halliday, Resnick, & Walker, Fundamentals of Physics, 2020. 

2 Tipler & Mosca, Physics for Scientists and Engineers, 2019. 

3 Serway & Jewett, Principles of Physics, 2018. 
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Tension (𝑇) that is being applied to the string, which has an affect on the tightness of the 

particles that are connected. 

Linear mass density (𝜇), which states the mass that is needed to move one unit length of the 

string4. 

In most cases, a higher tension applied to the string generally leads to faster wave 

propagation, while an increased linear mass density inversely affects the speed of the wave. 

The relationships of these properties to the behavior of a wave plays a vital role in 

determining the resonance frequency of a vibrating string. 

 

Standing Waves and Their Properties on a String 

A standing wave is a type of wave where two waves that possess the same properties 

(identical waves) interfere when they are traveling in opposite directions. This phenomenon 

creates a pattern of alternating points where constructive and destructive interference take 

place. Standing waves, unlike other waves, seem stationary because their nodes (points where 

amplitude is zero) and antinodes (points where their amplitude is at its maximum and 

minimum) remain fixed because of the interference pattern. For a vibrating string that is fixed 

on both ends, nodes form at the ends 5. 

A string fixed at both ends can only be a medium for a stationary wave to form if the 

conditions provide for the following rule: 

𝐿 =
𝑛𝜆

2
 

 
4 Hecht, Optics, 2017. 
5 Young & Freedman, University Physics, 2019. 
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where: 

• 𝐿 is the length of the section of the string, 

• 𝑛 is the harmonic number 𝑛 = 1,2,3, . .. where 𝑛 = 1 represents the fundamental 

frequency)6. 

In harmonic representation, the simplest standing wave with one antinode at the middle and 

two nodes at both ends of the string, is called the first harmonic (𝑛 = 1). The vibration 

frequency of the first harmonic is called the natural frequency (𝑓𝑛). 

Higher harmonics appear as n increases (𝑛 = 1,2,3, . ..) where the nodes and antinodes 

increase in number This results in further division of the string into sections. 

The frequency of each harmonic can be expressed with the equation: 

𝑓𝑛 = 𝑛𝑓1 

where: 

• 𝑓𝑛 is the frequency of the 𝑛th harmonic, 

• 𝑓1 is the fundamental frequency. 

The observation of nodes and antinodes helps to identify the harmonics and by alternating the 

tension applied to the string and observing the changes in harmonic frequencies, the affect of 

tension on standing waves can be observed. 

 

Mechanical Resonance and Tension 

Resonance is the phenomena that happens when an external force drives a system at its 

natural frequency. Resonance for a vibrating string happens when an external force applies a 

 
6 Burnett, B., Effects of Tension on Resonant Frequencies of Strings, 2018. 
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vibration at the natural frequency of the string, maximizing the energy transferred to the 

string7. This allows a stable standing wave to form. Resonance can be induced by external 

sources like an electromagnetic driver. 

In the following equation, the relation of tension applied to a vibrating string and its velocity 

can be determined by: 

𝑣 = √
𝑇

𝜇
 

Since frequency is established with the relation: 

𝑓 =
𝑣

𝜆
 

An increase in tension should result in a higher wave velocity, which should increase the 

resonance frequency. It can also be observed that since velocity is related to the square root of 

tension and directly proportional to the frequency, the relationship of frequency against 

tension should follow a non-linear trend. 

 

Derivation of the Relationship Between Tension and Resonance Frequency in a String 

Derivation of the equation relating the fundamental frequency to the tension applied on the 

string starts with the general wave equation. 

𝑣 = 𝑓𝜆 

The boundaries of a standing wave to form on a string with two closed ends only allow waves 

with wavelengths that provide the equation: 

 
7 Nave, R., GSU HyperPhysics, 2019. 
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𝐿 =
𝑛𝜆

2
 

which can be rearranged to: 

𝜆𝑛 =
2𝐿

𝑛
 

by multiplying both sides of the equation by 2/ 𝑛.  For a wave vibrating at its fundamental 

frequency, the wavelength is given by the equation: 

𝜆1 = 2𝐿 

By substituting 𝜆1 = 2𝐿 into the wave equation 𝑣 = 𝑓𝜆, the equation: 

𝑣 = 𝑓1(2𝐿) 

can be obtained. Solving for 𝑓1: 

𝑓1 =
𝑣

2𝐿
 

The wave speed in a stretched string depends on the tension and linear mass density. From 

Newton’s Second Law, the speed of a transverse wave on a stretched string is given by: 

𝑣 = √
𝑇

𝜇
 

Substituting 𝑣 = √
𝑇

𝜇
 for 𝑣 in 𝑓1 =

𝑣

2𝐿
 gives: 

𝑓1 =
1

2𝐿
√

𝑇

𝜇
 

The given equation is the desired equation for the fundamental frequency. For higher 

harmonics, the equation becomes: 
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𝑓𝑛 = 𝑛𝑓1 =
𝑛

2𝐿
√

𝑇

𝜇
 

This equation highlights three important factors: 

•  String Length (𝐿) – A longer string results in a lower frequency.  

•  Tension (𝑇) – A higher tension increases the wave speed, leading to a higher resonance 

frequency.  

•  Linear Mass Density (𝜇) – A heavier string has a lower wave speed, resulting in a lower 

resonance frequency. 

 

3. Planning and Prior Experimentation Information 

Aim 

The aim of the investigation is to determine how the variation to the tension applied to a string 

effect on its resonance frequency. The investigation does this by systematically changing the 

tension applied to the string and observing its corresponding resonance frequency. The study 

also aims to analyze if the existing mathematical models are effective in explaining the 

investigated phenomenon. 

 

Hypothesis 

It is hypothesized that an increase in the tension applied to the string will increase its 

resonance frequency. Based on the equation 𝑓 =
1

2𝐿
√

𝑇

𝜇
, the fundamental frequency of a wave 

should follow a non-linear trend against tension. Furthermore, the square of the frequency 
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should be directly proportional to the tension, which should result in a linear relationship 

when 𝑓2 is plotted and observed against tension. 

Variables 

Variable Type Variable Description 

Dependent 

Variable 

Resonance 

Frequency (Hz) 

The resonance frequency of the string, measured at 

the point of maximum amplitude (point where the 

string resonates, antinode). 

Independent 

Variable 

Tension on the 

String (N)  

Controlled by hanging different masses. Tension is 

calculated using the formula: 𝑇 = 𝑚 ⋅ 𝑔 where 𝑚 is 

the mass in kg and 𝑔 = 9.81 m/s
2
 (gravitational 

acceleration). 

 String Length 

(m) 

The length of the string was kept constant at a value 

of 0.90 m (±0.01 m) between fixed supports to 

ensure a constant wavelength. 

Controlled 

Variables 

Linear Mass 

Density 

The same string was used for every trial to ensure 

the linear mass density does not change and effect 

the results of the experiment. The total string length 

(1.00 m ± 0.01 m) and mass (0.55 g ± 0.01 g) were 

measured to calculate 𝜇. 

 Mode of 

Vibration 

The string was driven to resonate at its fundamental 

mode (or a harmonic with an antinode at the center) 

for consistency. The resonance was detected using 

the paper rider method, which ensures that only 

harmonics with a central antinode are observed. 

 Environmental 

Factors 

The experiment was conducted at standard 

conditions and air currents were blocked to prevent 

unwanted variations in string tension caused by 

thermal expansion or air damping. 

 

Table 1. Variables – The different types of variables and their explanations and relations 
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Materials and Apparatus 

• Sonometer apparatus: A hollow box with two fixed collums which are 0.90 meters 

apart, where the string is stretched. One end of the string is fixed to the sonometer and 

the other end is stretched over a pulley. This mechanism allows the string to stay at the 

same length, also allowing it to be stretched freely to adjust the tension on it. 

• String: A string of length 1.10 meters. The nylon cord of desired flexibility was used 

as the medium for the wave to form. The string was also chosen for its uniform 

properties and its ability to hold under various tension without deforming or breaking. 

• Meter ruler (±0.005 m): Used to measure and set the length of the string between the 

supports (0.90 m) and to verify the total length of string used. 

• Tuning forks: A set of tuning forks with known frequencies were used to drive the 

string into resonance. Each tuning fork produces a fixed frequency; by trying different 

forks one can find which frequency causes the string to resonate at each tension. 

• Ruler: A ruler was used to check the length of the string periodically to ensure that a 

consistent investigation was being conducted. 

 

Safety Considerations 

Precautions were taken during the experiment to ensure safety. Operations like adding the 

masses or stretching the string were done gently to avoid the string breaking and accidents 

happening. Also, anything sharp was handled with the necessary caution to avoid work 

accidents and any joints and knots were checked to ensure nothing broke and caused an 

accident. 
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Methodology 

1. The sonometer was set up and fixed in place with clamps on a small table. One end of 

the string was connected to the sonometer, making sure there was enough length to go 

over both columns. The length between the two columns was adjusted to 0.90 meters 

and was not changed after. The other end of the string was stretched over the pulley 

and masses were attached to the end. Initially, no additional mass was added (only the 

0.10 kg hanger provided a minimal tension to remove slack in the string). The string’s 

total length was measured as 1.00 m, and its mass (0.00055 kg) was measured with an 

electric balance to determine the linear mass density: 

𝜇 =
𝑚string

𝐿string

=
5.5 × 10−4 kg

1.00 m
= 5.5 × 10−4 kg/m. 

2. To achieve different tension values on the string, masses that meet the desired weight 

were added to the free end of the string. The total hanging mass 𝑚 = 𝑚hanger + 𝑚added 

was recorded. To create vibrations in the string, a tuning fork with a known frequency 

of vibration was struck to induce a vibration. It was then touched to the end of the 

sonometer box without the weights to induce a vibration in the string. This allowed the 

fork to drive the string at its own frequency. This process was repeated with different 

forks, each inducing a wave on the string. When the fork that induced the wave with 

the highest amplitude was found, it was tested multiple times against forks of similar 

frequencies to ensure that the fork in question gave the peak response. Also to observe 

more accurately, a slow-motion camera was used to observe with caution. When the 

fork was found, it was idealized and taken as as the fundamental resonance for the 

given tension. 

3. When resonance was achieved for the investigated tension, the frequency of the 

driving tuning fork was recorded to be the resonance frequency. To ensure reliable 
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data analysis, the procedure was repeated three times for each weight set that was 

being investigated. Also, the strings were allowed to slowly dampen into rest after 

each trial to ensure that the data was not being influenced. The process was repeated 

for every tension (weight) that was investigated.  

4. The experiment started with 0 kg added mass (only the 0.10 kg hanger, providing a 

small baseline tension). Then, for the test group, weights of 0.5 kg were added for 

each value of tension that was being recorded. This process was repeated until the total 

mass of the weights reached 3 kilograms, after which the string was observed to warp 

and risk breaking. This gave a range of 0.98 N (baseline ~0.10 kg) up to 

approximately 30 N (3.10 kg total). 

5. Throughout the experiment, joints, the length of the string and the state of the string 

were constantly checked by eye or a ruler for the length to ensure a consistent 

experiment. 

 

4. Data Analysis 

Data Collection and Results 

Hanging Mass (kg) 

Resonance 

Frequency (Hz) - 

Trial 1 

Resonance 

Frequency (Hz) - 

Trial 2 

Resonance 

Frequency (Hz) - 

Trial 3 

0.50 255.0 256.7 252.1 

1.00 345.9 345.8 345.2 

1.50 441.4 449.4 443.0 

2.00 513.8 511.0 511.2 

2.50 578.2 571.8 570.5 

3.00 646.9 655.8 637.7 

Table 2. Raw data – Resonance frequencies of the string for various applied masses (tensions). 
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Using the raw data table, average resonance frequencies for each mass was calculated. Also to 

compare, by using the theoretical formula for fundamental mode: 𝑓theory =
1

2𝐿
√

𝑇

𝜇
 theoretical 

resonances were calculated. Percentage differences between the average of the measured data 

and the theoretical value were calculated to compare how close the experimental results were 

to the theory. 

Hanging 

Mass (kg) 

Tension 

(N) 

Average Measured 

Frequency (Hz) 

Calculated 

Frequency (Hz) 

Percentage 

Error (%) 

0.50 5.886 255.0 242.6 5.1 

1.00 10.791 345.9 328.5 5.3 

1.50 15.696 441.4 396.2 11.4 

2.00 20.601 513.8 453.9 13.2 

2.50 25.506 578.2 505.0 14.5 

3.00 30.411 646.9 551.5 17.3 

 

The tension values are calculated with the 0.10-kilogram hanger. For example, if 0.50 

kilograms is added, the total mass comes out to be 0.60 kilogram which results in the net 

tension on the string being calculated by 𝑇 = 0.60 × 9.81 = 5.886 N. The average 

frequencies are the mean values of the values calculated through three trials which are shown 

in table 1. The percentage error shows the deviation from the theoretical expectations. 

 

Table 3. Processed data – Average measured frequency vs calculated frequency (theoretical) 

for each tension, with percentage error. 
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Calculations and Derivations 

To be able to effectively interpret the data, the calculations regarding the linear mass density 

(µ) of the string and the tension applied to the string were calculated. Also to observe and 

compare the experiment’s results, the theoretical values of calculated theoretical resonance 

frequencies and the percentage errors were calculated. The linear mass density was calculated 

using the equation: 

𝜇 =
𝑚

𝐿
 

where the symbols represent: 

• 𝑚 is the total mass of the string, 

• 𝐿  represents the length of the vibrating portion of the string. 

For this experiment, the string had a mass of 0.300 g  = 3.00 × 10−4 and a length of 1.000 m, 

so: 

𝜇 =
3.00 × 10−4

1.000
= 3.00 × 10−4 kg/m 

To calculate the tension generated by the hanging masses, the following formula was used: 

𝑇 = 𝑚total𝑔 

where: 

• 𝑚total is the total mass attached to the string, including the 0.10 kg hanger, 

• 𝑔 = 9.81 is gravitational acceleration. 

If a mass of 0.50 kg was taken as an example, the total mass would be: 

𝑚total = 0.50 + 0.10 = 0.60 kg 
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𝑇 = (0.60)(9.81) = 5.89 N 

(This process was repeated for all the other mass values to find each one.) 

 

The resonance frequency of a standing wave on a string can be modeled by the equation: 

𝑓 =
1

2𝐿
√

𝑇

𝜇
 

Substituting the values of 𝐿 = 1.000m and 𝜇 = 3.00 × 10−4kg/m, the theoretical frequency 

for 𝑇 = 5.89 can be calculated as follows: 

𝑓 =
1

2(1.000)
√

5.89

3.00 × 10−4
 

𝑓 =
1

2
√1.963 × 104 

𝑓 =
1

2
(140.1) 

𝑓 =
1

2
(140.1) 

(This calculation was repeated for all tension values.) 

To find out the accuracy of the experiment, percentage errors were used. They were 

calculated with the method that follows as: 

Percentage Error = (
∣ 𝑓measured − 𝑓calculated ∣

𝑓calculated

) × 100% 

If the measured frequency at 𝑇 = 5.89 was taken as an example, which is 255.0 Hz, and the 

theoretical frequency was 242.6 Hz, then: 
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Percentage Error = (
∣ 255.0 − 242.6 ∣

242.6
) × 100% 

= (
12.4

242.6
) × 100% 

= 5.1% 

(This process was repeated for all findings to calculate their deviation from the theoretical 

model.) 

 

Uncertainty 

The measured data of resonance frequencies, tension and propagation are natural aspects that 

arise in calculations due to human and machine error or imprecision. Given that the frequency 

measuring instrument had a precision of ±1 Hz, the uncertainty in the measured frequency is: 

Δ𝑓measured = ±1 Hz 

To objectively impart meaning on the impact of these uncertainties, the maximum and 

minimum values of resonance for each trial is considered: 

𝑓max = 𝑓measured + Δ𝑓measured, 𝑓min = 𝑓measured − Δ𝑓measured 

Hanging Mass 

(kg) 

Measured 

Frequency 

(Hz) 

Frequency 

Uncertainty 

(Hz) 

Minimum 

Frequency 

(Hz) 

Maximum 

Frequency 

(Hz) 

0.50 255.0 ±1 254.0 256.0 

1.00 345.9 ±1 344.9 346.9 

1.50 441.4 ±1 440.4 442.4 

2.00 513.8 ±1 512.8 514.8 

2.50 578.2 ±1 577.2 579.2 
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3.00 646.9 ±1 645.9 647.9 

 

Tension is calculated using the formula: 

𝑇 = 𝑚total𝑔 

where 𝑔 = 9.81 and 𝑚total is composed of the title weights and the 0.10-kilogram hanger. The 

uncertainties in mass and gravitational acceleration creates uncertainty in tension. The 

uncertainty in mass Δ𝑚 is ±0.01 kg, and uncertainty in 𝑔 is ±0.01 m/s². Using propagation of 

uncertainty: 

(
Δ𝑇

𝑇
) = √(

Δ𝑚

𝑚
)

2

+ (
Δ𝑔

𝑔
)

2

 

Hanging Mass (kg) Total Mass (kg) Tension (N) Tension 

Uncertainty (N) 

0.50 0.60 5.89 ±0.12 

1.00 1.10 10.79 ±0.22 

1.50 1.60 15.69 ±0.32 

2.00 2.10 20.60 ±0.42 

2.50 2.60 25.51 ±0.52 

3.00 3.10 30.41 ±0.62 

 

Using the resonance frequency equation: 

Table 4. Uncertainty – Summery of uncertainties in measured frequencies. 

Table 5. Uncertainty – Summery of uncertainties in measured tension values. 
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𝑓 =
1

2𝐿
√

𝑇

𝜇
 

and using uncertainty propagation: 

(
Δ𝑓

𝑓
) =

1

2
(

Δ𝑇
𝑇

 + Δ𝜇
𝜇 ) 

The propagated uncertainty in frequency for each measurement can be calculated by also 

incorporating the uncertainty in linear mass density 𝜇 = ±0.00005 𝑘𝑔/𝑚. 

Hanging Mass (kg) Measured Frequency (Hz) Frequency Uncertainty 

(Hz) 

0.50 255.0 ±2.8 

1.00 345.9 ±3.7 

1.50 441.4 ±4.5 

2.00 513.8 ±5.2 

2.50 578.2 ±5.9 

3.00 646.9 ±6.5 

 

These calculations tell us that the uncertainty in frequency measurement is systematic and 

instrument-dependent, remaining constant across all measurements. However, small changes 

in tension uncertainty result in larger variations in the final frequency uncertainty. Uncertainty 

is the main contributor to the resonance uncertainty as it has a square root term. Also, as the 

tension applied to the string increases, the absolute uncertainty in frequency also shows an 

increasing trend which suggests that measurement accuracy decreased at increased values of 

tension. 

Table 6. Uncertainty – Summery of uncertainties in measured tension values. 
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Graphical Analysis 

 

The graph presents the relation between the square root of tension and resonance frequency. 

The prediction by the theoretical model predicts the relation: 

𝑓 ∝ √𝑇 

In the graph, the theoretical fit loosely fits the measured data but its slope is greater than what 

would appear to be a very good fit for the graph. 

Graph 1. Graphical Analysis – Square root of tension (x-axis) plotted against the resonance 

frequency (y-axis). 

Graph 2. Graphical Analysis – Tension (x-axis) plotted against the square of resonance 

frequency (y-axis). 
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The graph explores the relationship between frequency squared and tension follows a similar 

trend, but again the slope seems to not be the best fit for the data. Overall, both graphs show a 

matching relation but do not succeed at capturing the magnitude of the relationship best. 

 

5. Evaluation and Conclusion 

Strengths 

Strengths Explanation 

Theoretical Accuracy The experiment closely followed the 

mathematical model of standing waves, 

confirming the expected proportionality 

between frequency and the square root of 

tension. 

Clear Trend in Data Despite some deviations, the measured 

frequencies displayed a strong correlation 

with theoretical expectations. 

Use of Multiple Trials Three trials per measurement ensured 

reliability and helped mitigate random 

errors. 

Graphical Analysis The use of multiple graphs provided a 

detailed visualization of the results, 

reinforcing conclusions. 
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Uncertainty Considerations Errors were calculated systematically, and 

uncertainties were accounted for in all 

measured values. 

 

Limitations and Improvements 

Limitations Suggested Improvements 

Instrumental Precision Use a higher-precision frequency measuring 

device to reduce uncertainty. 

String Elasticity Variations Using more consistent material with a 

uniform density to reduce systematic errors. 

Environmental Factors Conduct the experiment in a controlled 

environment to minimize air resistance and 

external vibrations. 

Manual Error in Determining Resonance Utilize an electronic signal analyzer to 

precisely detect resonance without human 

subjectivity. 

High-Frequency Deviations Extend the experiment to include lower and 

higher tensions to verify behavior across a 

broader range. 

 

 

Table 7. Strengths – Strengths of the experiment and the investigation and their explanations. 

Table 8. Limitations and Improvements–The limitations and improvements of the 

investigation and the experiment. 
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Conclusion 

The aim of the investigation was to investigate the relationship between the effect of tension 

on a string to its resonance frequency. The data collected and analyzed supported the existing 

theoretical models, showing that: 

𝑓 ∝ √𝑇 and 𝑓2 ∝ 𝑇 

The experimental findings did support the validity of the relation however, it did not succeed 

greatly at capturing the magnitude of the relationships and other elements that make them up. 

The likelihood of systematic errors shows the importance of using high precision instruments 

in experiments of magnitude. While the experiment provided an analysis of waves, it also 

provided a deeper relation between theory and experimental. The hypothesized claim of an 

increase in tension inducing an increase in the frequency of the waves came ou to be 

confirmed. 

  



23 
 

Bibliography 

 

Burnett, B. (2018). Effects of tension on resonant frequencies of strings. 

 

Halliday, D., Resnick, R., & Walker, J. (2020). Fundamentals of physics (11th ed.). Wiley. 

 

Hecht, E. (2017). Optics (5th ed.). Pearson. 

 

Nave, R. (2019). GSU HyperPhysics. Georgia State University. Retrieved from 

http://hyperphysics.phy-astr.gsu.edu/ 

 

Serway, R. A., & Jewett, J. W. (2018). Principles of physics (11th ed.). Cengage Learning. 

 

Tipler, P. A., & Mosca, G. (2019). Physics for scientists and engineers (7th ed.). W. H. 

Freeman. 

 

Young, H. D., & Freedman, R. A. (2019). University physics (14th ed.). Pearson. 


