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INTRODUCTION 

Since I was doing my internship for a renewable energy company, I had the very rare 

opportunity to observe wind turbines closely. While most people see wind turbines as just 

machines for producing electricity, my view was far more technical: these long blades, nearly 

50 meters long, spinning in high velocity, stopping them isn't an easy task as the ordinary 

friction brakes won't do because of the high amounts of heat and wear incurred (Zeng et al., 

2018). Instead, they opted for electromagnetic braking systems, which enable smooth slow-

downs due to no physical contact (Krause et al., 2013).  

I saw a technician test one of these systems. It was while the turbine blades were rapidly 

spinning that the system was activated and the turbine slowly slowed down to a complete stop 

without any sound and contact. This, though, threw me into confusion: How can something stop 

without direct contact? The engineer explained that when the blades move past a stationary 

conductive plate, electromagnetic induction generates eddy currents in it (Halliday et al., 2013). 

These currents subsequently generate an opposing magnetic force which resists motion, thus 

slowing down the blades (Griffiths, 2017). That made me wonder if the same principle would 

also act on back-and-forth oscillatory motion, like in a mass-spring system.  

The whole study will answer its research question: "How does a number of magnet attached a 

vertically oscillating spring influence its oscillation period in the existence of electromagnetic 

induction in the solenoid?"  

The aim of the investigation has been to look specifically into how the number of magnets 

affects the period of oscillation of a spring-magnet system and the induced electromagnetic 

force (EMF) in the solenoid. In this case, a neodymium magnet attached to a low-stiffness 

spring oscillates where it is generating an induced EMF in the solenoid below. The 

galvanometer records the current variations, while the chronometer is employed to measure the 

oscillation period. The number of magnets will be increased by 0.015 kg to show the change in 

period of oscillation and induced EMF in the solenoid. Further, the trials shall be repeated 5 

times in a bid to improve on the accuracy and the control of errors. 
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Hypothesis  

As the number of magnets increases, the oscillation period is expected to increase, since adding 

a magnet in each trial increases the total mass of spring. Due to the increase in the period, the 

magnet will remain within the solenoid for a longer time, which will diminish the rate of change 

of magnetic flux, producing less induced EMF. 

 

BACKGROUND INFORMATION  

1- Electromotive Force (emf) and Ohm’s Law 

In an electrical circuit, the induced electromotive force (EMF) generates a current, which in 

turn creates a potential difference across the circuit’s resistance, following Ohm’s Law 

(Tsokos,2023): 

 

𝜀 =  𝐼 ⋅  𝑅 [1]    

 

 

Where: 

 𝜀 = Induced electromotive force (V) 

 𝐼 = Current measured by the galvanometer (A) 

 𝑅 = Total circuit resistance, measured by the ohmmeter. 

Because the galvanometer measures the current, we can determine the induced EMF in the 

system indirectly by this relationship. By analyzing the current response, we can see how 

electromagnetic induction affects the oscillatory system. 

 

 

2- Faraday’s Law of Electromagnetic Induction 

Faraday’s Law states that a changing magnetic field, the region around a magnetic material or 

a moving electric charge within which the force of magnetism acts (Oxford University Press, 

Equation 1. Induced EMF-current relationship. 
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2010), through a solenoid induces an electromotive force (EMF), a type of physical interaction 

that occurs between electrically charged particles, in the loop (Tsokos,2023). Mathematically, 

it is expressed as: 

𝜀 =  −𝑁
𝑑Φ𝐵

𝑑𝑡
  [2] 

Where: 

 𝜀 is the induced EMF (in volts, V), 

 N is the number of loops in the conductor, 

 
𝑑Φ𝐵

𝑑𝑡
 is the rate of change of magnetic flux, (in webers per second, Wb/s) 

 The minus sign represents Lenz’s Law, indicating that the induced EMF opposes the 

change in magnetic flux. 

This law is fundamental to understanding electromagnetic induction and has been 

experimentally validated in numerous studies (Halliday et al., 2013; Griffiths, 2017).  

 

Derivation od Faraday’s Law 

Step 1- Magnetic Flux 

A change in magnetic flux over time induces an electromotive force (EMF) referred to as 

Equation 1., magnetic flux (Φ) represents the total magnetic field passing through a given 

surface (Tsokos,2023). It is a scalar quantity and is defined as: 

𝛷𝐵 = 𝐵 ∙ 𝐴 ∙ cos(𝜃) [3] 

 

Where: 

 B is the magnetic field strength (T),  

 A is the surface area of the loop (m²),  

 θ is the angle between the magnetic field and the normal to the loop's surface. 

 

 

Equation 2. Induced EMF Formula 

Equation 3. Magnetic Flux Formula 
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Step 2 - Change in Magnetic Flux 

Taking the time derivative of both sides and substituting into Equation 1, the expression 

becomes: 

𝑑𝛷𝐵

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝐵 ∙ 𝐴 ∙ cos (𝜃)) 

3- Electric Field Induced by a Changing Magnetic Field in a Solenoid 

 

 

 

 

The magnetic flux through a circular loop of radius r is given by:  

𝐴 = 𝜋𝑟2  [4] 

 

Substituting this into Equation 3. Since the experiment is conducted with the loop perpendicular 

to the magnetic field, the angle θ between the field and the normal to the surface is 0o, making 

𝑐𝑜𝑠 𝜃 =1. Thus, the expression simplifies to: 

𝛷𝐵 = 𝐵𝜋𝑟2 

Substitute in the Faraday’s Law: 

𝜀 = −𝑁 
𝑑Φ𝐵

𝑑𝑡
= −

𝑑

𝑑𝑡
(𝐵𝜋𝑟2) 

= −𝑁𝜋𝑟2
𝑑𝐵

𝑑𝑡
   

This result shows that the induced electromotive force (EMF) is proportional to the time rate of 

change of the magnetic field and scales with the area of the circular loop. 

Fig.1 A long solenoid carrying a time-varying current given (Serway,2023) 

Equation 4. Area Formula of Circle 
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The experiment involves a solenoid with a time-varying magnetic field. The magnetic field (B) 

in the solenoid varies sinusoidally with time, as described by the equation (Serway,2023): 

𝐵(𝑡) = 𝐵𝑚𝑎𝑥 sin (
2𝜋𝑡

𝑇
)  [5] 

where:   

 𝐵𝑚𝑎𝑥 is the maximum magnetic field strength,   

 T is the oscillation period,   

 t is the time. 

The magnetic field changes from  0 to its maximum value (𝐵𝑚𝑎𝑥) in one-quarter of the 

oscillation period (T/4). Therefore, the rate of change of the magnetic field (
𝑑𝐵

𝑑𝑡
) is given by 

 

𝑑𝐵

𝑑𝑡
 =

𝐵𝑚𝑎𝑥

𝑇/4
=

4𝐵𝑚𝑎𝑥

𝑇
 

Substitute in the Equation 5: 

𝜀 = −𝑁𝜋𝑟2
4𝐵𝑚𝑎𝑥

𝑇
    [6]  

This experiment illustrates Faraday's Law as the magnet hanging from the end of the iron rod 

attached to a spring goes down through the coil. In Figure 3, the change in the magnetic field 

flux represented by the red arrow points downward, induced EMF and current in the direction 

of the blue arrow inside the coil. According to Lenz's Law, the induced current opposes the 

motion of the magnet. 

 

 

 

 

 

 

 

 Fig.2 Diagram of Faraday's Law in an Oscillating Magnet-Spring System 

S 

N 

Equation 6. EMF of the Solenoid 

Equation 5. Maximum Magnetic Field Formula 
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4- Lenz’s Law of Electromagnetic Induction 

Lenz’s Law states that the direction of the induced current in a circuit is such that it opposes 

the change in magnetic flux that produced it. (Tsokos,2023) This is represented by the minus 

sign in Faraday’s Law:  

𝜀 =  − 𝑁
𝑑Φ𝐵

𝑑𝑡
   

 

The minus sign ensures that the induced EMF generates a current that opposes the change in 

magnetic flux, preventing energy amplification and conserving energy. For example:   

 If the magnetic flux through a loop is increasing, the induced EMF will create a current 

whose magnetic field opposes the increase. (Tsokos,2023) Figure 3 represents the 

scenario where the magnetic flux is increasing, and the induced current opposes the 

increase. 

 

 

 

  

 

 

 If the magnetic flux is decreasing, the induced EMF will create a current whose 

magnetic field opposes the decrease. (Tsokos,2023) Figure 2 represents the scenario 

where the magnetic flux is decreasing, and the induced current opposes the decrease  

 

 

 

 

 

Equation 2. Induced EMF Formula 

Fig.4 (c) Illustration of electromagnetic induction (College Sidekick,n.d.) 

Fig.3 (a)-(b) Illustration of electromagnetic induction (College Sidekick,n.d.) 
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5- Eddy Currents 

As a conductor moves through a changing magnetic field, Eddy currents are induced that 

develop an opposing magnetic field due to Lenz's Law (Serway, 2023). In this experiment, as 

the magnet oscillates through the solenoid, eddy currents are developed in the coil, yielding the 

force acting against the motion; hence, it creates a retardation effect to slow it down. In this 

case, as the oscillating magnet moves in the solenoid, eddy currents are induced in the coil, and 

they impact the oscillation period and induced EMF. Such effect involves the relationship 

between mass and electromagnetic induction in the spring-magnet system. 

 

 

 

 

 

 

6- Oscillatory Motion  

Oscillatory motion, often referred to as simple harmonic motion (SHM), occurs when an object 

moves back and forth about an equilibrium position. (Tsokos,2023) In this experiment spring-

magnet system, the magnet attached to the spring exhibits oscillatory motion as it moves up and 

down through the coil. 

The period of oscillation T is the time it takes for the magnet to complete one full cycle of 

movement. For a simple mass-spring system (neglecting air resistance and damping), the period 

of oscillation is given by the formula:  

𝑇 = 2𝜋√
𝑚

𝑘
    [7] 

 

 

Fig.5 Formation of eddy currents in a conducting plate moving through a magnetic field. (Kelly, T., 

2017) 

Equation 7. Oscillatory Motion Formula 
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Where: 

 T is the period of oscillation (in seconds, s), 

 m is the mass attached to the spring (in kilograms, kg), 

 k is the spring constant (in N/m). 

Derivation of the Oscillation Period Formula: 

Step 1 - Hooke's Law and Restoring Force: 

For an object to experience Simple Harmonic Motion (SHM), it must experience a restoring 

force, which acts to bring the object back to its equilibrium position, a point at which the spring 

force and the weight are equal in magnitude but opposite in direction (Blum, n.d.), when 

displaced. This force is directed opposite to the displacement from the equilibrium position. 

The spring restores the system to equilibrium due to the applied force. According to Hooke's 

law, the force exerted by the spring is directly proportional to the displacement of the magnet. 

(Oxford University Press, 2010):  

𝐹 = −𝑘 ∙ 𝑥  [8] 

 

Where: 

 F is the restoring force (in Newtons, N),  

 k is the spring constant (in Newtons per meter, N/m),  

 x is the displacement from the equilibrium position (in meters, m).  

This force is always opposite to the displacement of the mass, pulling the mass back toward the 

equilibrium position. This action creates oscillatory motion, as the mass moves back and forth 

around the equilibrium point due to the restoring force exerted by the spring. 

Step 2 - Newton’s Second Law: 

According to Newton’s Second Law, the force acting on an object is equal to its mass times 

acceleration: (Tsokos,2023)  

 

Equation 8. Hook’s Law Formula 
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𝐹 = 𝑚 ∙ 𝑎  [9]  

In the context of Newton's second law, F is the force (in Newtons, N), m is the mass of the 

object (in kilograms, kg), and a is the acceleration (in meters per second squared, m/s²). Since 

the acceleration is the second derivative of the displacement with respect to time, we can write:  

𝑎 =
𝑑2𝑥

𝑑𝑡2
  [10] 

Thus, Newton’s second law becomes: 

𝑚 ∙
𝑑2𝑥

𝑑𝑡2
= −𝑘 ∙ 𝑥 

Rearranging: 

𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
∙ 𝑥 

Step 3 – Solving the differential equation: 

The solution to this type of differential equation is a sinusoidal function of time. The general 

solution for SHM is:  

𝑥(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡 + 𝜙)  [11] 

Where: 

 x(t) is the displacement as a function of time, 

 A is the amplitude (maximum displacement), 

 ω is the angular frequency (in radians per second, rad/s), 

 ϕ is the phase constant, 

 t is time (in seconds). 

Step 4 – Determining the Angular Frequency (ω) 

By comparing the differential 
𝑑2𝑥

𝑑𝑡2 = −
𝑘

𝑚
∙ 𝑥 ith the general form of the solution  

𝑥(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), we can find the angular frequency ω. 

Equation 9. Newton’s Second Law Formula 

Equation 10. Acceleration Formula 

Equation 11. the sinusoidal nature of SHM Formula 
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When you take the second derivative of 𝑥(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) with respect to time, you get: 

𝑑2𝑥

𝑑𝑡2 = −𝜔2 ∙ 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), 

Since the original differential equation states that 
𝑑2𝑥

𝑑𝑡2 = −
𝑘

𝑚
∙ 𝑥 must be equal to −

𝑘

𝑚
∙ 𝑥, we 

substitute 𝑥 = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙)into the equation: we equate the coefficients  of. 

 

For this equation to hold for all values of t, the coefficients of 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙) on both sides 

must be equal, giving: 

𝜔2 =
𝑘

𝑚
 

𝜔 = √
𝑘

𝑚
 

The period T of oscillation is the time it takes for the object to complete one full cycle. The 

period is related to the angular frequency ω by the formula: 

𝑇 =
2𝜋

𝜔
 [12] 

Substituting 𝜔 = √
𝑘

𝑚
  into this equation:  

𝑇 =
2𝜋

√ 𝑘
𝑚

 

Finally: 

𝑇 = 2𝜋√
𝑚

𝑘
 

 

 

Equation 12. Angular frequency and the Period Relation Formula 

−𝜔2𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙) = −
𝑘

𝑚
𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙)  

Solving for 𝜔,we obtain: 
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METHODOLGY 

All measurements were recorded using the units of the measuring instruments employed in the 

experiment. However, for consistency with SI units, values were converted where necessary. 

Experimental Set up & Apparatus 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Purpose 

Spring (low-stiffness) Provides restoring force for controlled oscillations. 

Copper Wire (Solenoid) 150 turns Induces eddy currents when the magnet moves through it. 

Galvanometer(milliAmper±0.01 μA) Measures the induced EMF. 

Tripod Support Stabilizes the system to prevent external interference. 

Neodymium Magnet (0.015kg× 𝟓) Provides magnetic field, mass adjustable for experimentation. 

Ruler (0.3m ± 0.0005m) Measures the displacement of the magnet during its 

oscillation. 

Chronometer (Seconds ±0.005s) Measures the oscillation period. 

Gaussmeter (Tesla ±0.001 T) Used to measure the magnets magnetic field strength  

Digital Multimeter (Ω) Used to measure the resonance  

Spring (low-

stiffness) 

Metal Rod 

Copper Wire 

(Solenoid) 

Tripod Support 

Fig.6 Experimental Set Up with 

Labeled Components 

Fig.7 Experimental Set Up and with 

Labeled Components 

Table 1. Equipment and Purpose in the Experiment 

Fig.8 Galvanometer that used in the 

experiment 

Galvanometer (μA) 

Neodymium 

Magnet (0.015 

kg) 

Fig.9 Gaussmeter that used in the 

experiment 

Gaussmeter (T) 
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Rationale for Selected Apparatus 

 

 

 Spring (low-stiffness): The spring provides the enabling force of oscillations. In testing 

various options, a soft spring was chosen in preference to stiffer ones, which failed even 

to oscillate with very light masses, such as 0.015 kg, making it very difficult to obtain 

clear and reliable measurements. 

 Metal Rod: The metal rod will have to be used to properly secure the neodymium 

magnets in placement since the magnetism of the spring cannot directly hold them. The 

rod guarantees that the magnets will remain attached to the spring while allowing them 

free oscillation. In that way, it prevents the detachment of the magnets during oscillation 

and will help secure the stability of the system all throughout the experiment. 

 Copper Wire: The choice of 150 turns is based on available laboratory equipment and 

ensures the induced EMF is strong enough for accurate measurement.  

 Galvanometer: A galvanometer was used because it was the most sensitive device in 

the laboratory for measuring EMF. Moreover, a galvanometer can show the direction of 

the current induced, which for Lenz's Law is vital in understanding the behavior of the 

system. I had first tried with a voltmeter but couldn't really get a reading as close as the 

galvanometer, nor did it show the direction of the current. 

 Tripod Support: The tripod stabilizes the setup, keeping the spring, rod, and solenoid 

aligned while minimizing vibrations for accurate data. 

 Neodymium Magnets (0.015kg × 5): First, I tested 0.005kg magnets, and the results 

showed no significant difference when adding or removing magnets, but after I tested 

0.015kg magnets I confirmed that 0.015 kg mass range is appropriate for studying the 

oscillation. 

 Ruler: 0.3m ruler provides adequate measurement range that’s why a longer ruler was 

unnecessary for this experiment. 

 Chronometer: A chronometer is used to get more concise measures in the oscillation 

period. 
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Variables 

 

Procedure 

1. Setting Up the Experiment 

1. The tripod stand should be secured to a stable surface to minimize external vibrations. 

2. Attach the low stiffness spring to the tripod stand. 

3. Fix a metal rod at the lower end of the spring to hold the magnets in place. 

4. A solenoid (copper wire with 150 turns) is placed directly beneath the oscillating magnet 

system so as to measure the induced EMF. 

5. Connect a galvanometer to the solenoid to record current changes. 

6. Place a ruler (0.3m) next to the setup to measure oscillation amplitude. 

2. Conducting the Oscillations 

7. Attach a single neodymium magnet (0.015kg) to the metal rod and ensure it is secured. 

Type of 

Variable 

Variable Description and 

Importance 

Method of Control 

Independent 

Variable 

Magnet Number Mass is varied by adding 

0.015kg magnets, affecting 

oscillation period and 

induced EMF. 

Mass is controlled by stacking 

identical 0.015kg neodymium 

magnets. 

Dependent 

Variables 

Oscillation 

Period 

The time taken for the 

system to complete one 

full oscillation, expected to 

vary with mass. 

Measured using chronometer. 

Each mass will be tested 5 

times to obtain averages. 

Induced 

Electromotive 

Force (emf) 

The emf induced in a 

nearby coil due to 

changing magnetic flux 

from oscillating magnets. 

Measured using a galvanometer 

to track current changes 

Controlled 

Variables 

Spring Constant 

(k) 

Ensures a consistent 

restoring force across all 

trials, critical for valid 

oscillation period 

measurements. 

The same spring is used 

throughout the experiment, with 

a measured spring constant of 

k=6.2N/m, determined using 

Hooke’s Law (Appendix A). 

 Magnetic Field 

Strength 

A constant magnetic field 

is necessary for reliable 

EMF readings, as 

fluctuations affect 

magnetic flux. 

Identical neodymium magnets 

are used for each trial and a 

Gaussmeter verified the 

magnetic field to keep it 

constant 

 Table.2 Variables Table 
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8. Allow the magnet to move downward naturally due to its weight and begin oscillations 

without applying any additional force. 

9. Simultaneously, use the galvanometer to record the current during oscillations. 

10. Use a chronometer to measure the time taken for 10 complete oscillations and then 

divide by 10 to get the average oscillation period (T) for each mass. 

11. Ensure that the timing starts precisely when the mass passes the equilibrium position to 

maintain consistency. 

3. Repeating for Different Masses 

12. Repeat steps 7–11 with additional magnets, increasing the total mass in increments of 

0.015 kg, 0.030 kg, 0.045 kg, 0.060 kg, and 0.075 kg by stacking magnets onto the rod. 

13. Ensure the spring remains unchanged throughout all trials to maintain consistency in 

the restoring force. 

14. Conduct five trials for each mass to minimize random errors. 

Safety, Ethical, and Environmental Considerations 

This involved careful handling of electrical equipment to avoid short circuits or overheating, 

though voltages were low during the experiment. Ethically, accurate data were recorded and 

reported. Environmentally, the impact was minimal; there were no hazardous materials 

involved. 

DATA 

Raw Data  

1- Oscillatory Period Raw Data Table for 10 Complete Oscillations 

Mass(Kg) Trail 1 

Period 

(±𝟎. 𝟎𝟏𝐬) 

Trail 2 

Period 

(±𝟎. 𝟎𝟏𝐬) 

Trail 3 

Period 

(±𝟎. 𝟎𝟏𝐬) 

Trail 4 

Period 

(±𝟎. 𝟎𝟏𝐬) 

Trail 5 

Period 

(±𝟎. 𝟎𝟏𝐬) 

0.015 4.42 4.70 4.16 4.66 4.81 

0.030 6.17 6.55 6.79 6.36 6.70 

0.045 7.29 7.24 7.57 7.98 7.58 

0.060 8.84 8.40 8.45 8.64 8.87 

0.075 9.50 9.43 9.34 9.37 9.29 

 

 

Table.3 Oscillatory Period Raw Data Table 
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2- Current Raw Data Table 

Mass(Kg) Trail 1 

Current 

(±𝟎. 𝟎𝟏 ×

𝟏𝟎−𝟕 A) 

Trail 2 

Current 

(±𝟎. 𝟎𝟏 ×

𝟏𝟎−𝟕A) 

Trail 3 

Current 

(±𝟎. 𝟎𝟏 ×

𝟏𝟎−𝟕A) 

Trail 4 

Current 

(±𝟎. 𝟎𝟏 ×

𝟏𝟎−𝟕A) 

Trail 5 

Current 

(±𝟎. 𝟎𝟏 ×

𝟏𝟎−𝟕A) 

0.015 5.1 × 10−6 4.8 × 10−6 5.2 × 10−6 4.9 × 10−6 5.0 × 10−6 

0.030 4.4 × 10−6 4.4 × 10−6 4.6 × 10−6 4.7 × 10−6 4.3 × 10−6 

0.045 4.0 × 10−6 4.1 × 10−6 3.9 × 10−6 4.2 × 10−6 3.8 × 10−6 

0.060 3.5 × 10−6 3.6 × 10−6 3.4 × 10−6 3.7 × 10−6 3.3 × 10−6 

0.075 3.2 × 10−6 3.2 × 10−6 3.0 × 10−6 3.0 × 10−6 3.1 × 10−6 

 

 

Processed Data 

The raw data collected from the experiment was processed to determine key parameters. Below, 

an example calculation for the 0.015 kg mass is provided, with the same procedure applied to 

all other mass values. 

 

1- Oscillatory Period Processed Data 

Mass(Kg) Avg. 10 Oscillation 

Time (s) 

Avg. 

Period (s) 

Standard 

Deviation (s) 

Total 

Uncertainty(±𝐬) 

0.015 4.55 0.455 0.260 ±0.116 

0.030 6.51 0.651 0.252 ±0.113 

0.045 7.53 0.753 0.295 ±0.132 

0.060 8.64 0.864 0.216 ±0.0971 

0.075 9.39 0.939 0.0814 ±0.0378 

 

 

 

1. Average 10 Oscillation Time Calculation 

The average oscillation time was obtained by calculating the arithmetic mean of five 

measured values from the raw data table. The formula used is: 

 

Table.4 Current Raw Data Table 

Table.5 Oscillatory Period Processed Data Table 
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Average time =
∑ 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝑁
 

where: 

 ∑ 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 measured represents the sum of the measured oscillation times, 

 N=5 is the number of trials. 

For 0.015 kg mass: 

Average time =
4.42 + 4.70 + 4.16 + 4.66 + 4.81

5
= 4.55 𝑠 

2. Average Period Calculation 

Since the measured times correspond to 10 complete oscillations, the period of a single 

oscillation was determined using: 

𝑇𝑎𝑣𝑔 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒

10
 

For 0.015 kg mass: 

𝑇𝑎𝑣𝑔 =
4.55 𝑠

10
= 0.455 𝑠 

3. Standard Deviation Calculation 

Standard Deviation (σ) shows how spread out the raw measurements are. The standard 

deviation was calculated using the sample standard deviation formula: 

𝛔 = √
∑(𝒙𝒊 − �̅�)𝟐

𝑵 − 𝟏
  [𝟏𝟑] 

where:  

 𝒙𝒊 are the individual measurements, 

 �̅� is the mean of the measurements, 

 N is the number of trials (5 in this case), 

 The denominator N−1 is used because this is a sample, not a full population. 

Equation 13. Standard Deviation Formula 
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For example, for 0.015 kg mass, the five trials are: 

4.42, 4.70, 4.16, 4.66, 4.81 

 Compute the mean: 

x̅  =
4.42 + 4.70 + 4.16 + 4.66 + 4.81

5
= 4.55 s 

 Compute squared deviations from the mean: 

The squared deviations are:   

( 4.42 −  4.55 )2,  ( 4.70 −  4.55 )2, ( 4.16 −  4.55 )2,  ( 4.66 −  4.55 )2, ( 4.81 −  4.55 )2 

Calculating each: 

(−𝟎. 𝟏𝟑)𝟐 = 𝟎. 𝟎𝟏𝟔𝟗 

(𝟎. 𝟏𝟓)𝟐 = 𝟎. 𝟎𝟐𝟐𝟓 

(−𝟎. 𝟑𝟗)𝟐 = 𝟎. 𝟏𝟓𝟐𝟏 

(𝟎. 𝟏𝟏)𝟐 = 𝟎. 𝟎𝟏𝟐𝟏 

(𝟎. 𝟐𝟔)𝟐 = 𝟎. 𝟎𝟔𝟕𝟔 

 Compute the variance 

0.0169 + 0.0225 + 0.1521 + 0.0121 + 0.0676

4
= 0.0678 

 Compute the standard deviation: 

σ = √0.0678 = 0.260 
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4. Total Uncertainty of the Collected Data  

The total uncertainty is calculated by combining the experimental uncertainty (arising from 

the standard deviation) and the systematic uncertainty (arising from the precision of the 

chronometer). 

∆Ttotal = √(∆Texperimental)2 + (∆Tsystematic)2  [14] 

Where:  

 ∆𝑻𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍: Uncertainty calculated from the standard deviation 

 ∆𝑻𝒔𝒚𝒔𝒕𝒆𝒎𝒂𝒕𝒊𝒄: Precision of the stopwatch (± 𝟎. 𝟎𝟏 𝒔) 

Experimental uncertainty calculated as 

𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 =
𝜎

√𝑁
 

Where: 

 𝝈: Standard deviation of the period measurements  

 𝑵: Number of trails 

For example, for 0.015 kg mass: 

𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 =
0.260

√5
≈ 0.116 𝑠 

𝑇𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 = 0.01 𝑠 

∆𝑇𝑡𝑜𝑡𝑎𝑙 = √(0.116)2 + (0.01)2 = √0.013456 + 0.0001 = √0.013556 ≈ 0.116 𝑠 

 

 

 

Equation 14. Total Uncertainty Formula 
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2- Oscillatory Period Theoretical Data 

 

1. Theoretical Period Calculation 

We can calculate the theoretical period by using the Equation 6, taking the spring constant 6.2 

N/m (Appendix A). 

Example calculation for 0.015 kg mass: 

𝑇𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 2π√
0.015

6.2
= 0.309 

2. Uncertainty of the Theoretical Data 

The uncertainty in T is calculated using error propagation. The uncertainty in the theoretical 

period (± s) is typically calculated by propagating the uncertainties in the measured quantities 

(mass m, spring constant k, or length L) through the formula for the period.  

∆𝑇 = 𝑇√(
∆𝑚

𝑚
)

2

+ (
∆𝑘

𝑘
)

2

  [15] 

 

Substitute the values for the mass 0.015 kg: 

 

∆𝑇 = 0.309√(
0.00010

0.015
)

2

+ (
0.01

6.2
)

2

   

 

 

∆𝑇 ≈  0.00539𝑠   

 

 

Mass(Kg) Theoretical Period (s) Uncertainty(±𝐬) 

0.015 0.309 ±0.0054 

0.030 0.437 ±0.0072 

0.045 0.535 ±0.087 

0.060 0.618 ±0.010 

0.075 0.691 ±0.0112 

Table.6 Oscillatory Period Theoretical Data Table 

Equation 15. Theoretical Uncertainty Formula 
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3- Individual EMF Values for Each Trial  

Mass(Kg) Trail 1 

EMF 

(V) 

Trail 2 

EMF 

(V) 

Trail 3 

EMF 

(V) 

Trail 4 

EMF 

(V) 

Trail 5 

EMF 

(V) 

Average 

EMF(V) 

Uncertainty in 

EMF(±𝐕) 

 

0.015 3.16

× 10−5 

2.98

× 10−5 

3.22

× 10−5 

3.04

× 10−5 

3.10

× 10−5 

3.10

× 10−5 

8.77 × 10−7 

0.030 2.73

× 10−5 

2.73

× 10−5 

2.84

× 10−5 

2.91

× 10−5 

2.67

× 10−5 

2.78

× 10−5 

9.11 × 10−7 

0.045 2.48

× 10−5 

2.54

× 10−5 

2.42

× 10−5 

2.60

× 10−5 

2.36

× 10−5 

2.48

× 10−5 

8.77 × 10−7 

0.060 2.17

× 10−5 

2.23

× 10−5 

2.11

× 10−5 

2.29

× 10−5 

2.05

× 10−5 

2.17

× 10−5 

8.77 × 10−7 

0.075 1.98

× 10−5 

1.98

× 10−5 

1.86

× 10−5 

1.86

× 10−5 

1.92

× 10−5 

1.92

× 10−5 

5.54 × 10−7 

 

 

1- Individual EMF Calculation 

By using the Equation 1, we can calculate the emf of the data’s that collected. Resistance 

of this circuit is 6.20 ohm which is calculated by the Multimeter. 

 

Example calculations for 0.015 kg mass: 

𝜀 = 5.0 × 10−6 ∙ 6.20 = 3.10 × 10−5 𝑉 

 

2- Average EMF 

Example calculation for 0.015 kg mass: 

 

𝜀𝑎𝑣𝑔 =
3.16 + 2.98 + 3.22 + 3.04 + 3.10

5
× 10−5 = 3.10 × 10−5 

3- Uncertainty in EMF 

Example calculation for 0.015 kg mass: 

 

∆𝜀 = √
(3.16 − 3.10)2 + (2.98 − 3.10)2 + (3.22 − 3.10)2 + (3.04 − 3.10)2 + (3.10 − 3.10)2

5
× 10−5 

= 8.77 × 10−7  V 

 

 

Table.7 Individual EMF Values for Each Trail Data Table 
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4- EMF Theoretical Data 

Mass(Kg) Trail 1 

EMF 

(V) 

Trail 2 

EMF 

(V) 

Trail 3 

EMF 

(V) 

Trail 4 

EMF 

(V) 

Trail 5 

EMF 

(V) 

Average 

EMF(V) 

Uncertainty 

in EMF(±𝐕) 

 

0.015 −4.29

× 10−5 

−4.03

× 10−5 

−4.56

× 10−5 

−4.07

× 10−5 

−3.94

× 10−5 

−4.18

× 10−5 

2.23 × 10−6 

0.030 −3.07

× 10−5 

−2.89

× 10−5 

−2.79

× 10−5 

−2.98

× 10−5 

−2.83

× 10−5 

−2.91

× 10−5 

1.02 × 10−6 

0.045 −2.60

× 10−5 

−2.62

× 10−5 

−2.50

× 10−5 

−2.37

× 10−5 

−2.50

× 10−5 

−2.52

× 10−5 

8.09 × 10−7 

0.060 −2.14

× 10−5 

−2.25

× 10−5 

−2.24

× 10−5 

−2.19

× 10−5 

−2.13

× 10−5 

−2.19

× 10−5 

4.90 × 10−7 

0.075 −1.99

× 10−5 

−2.01

× 10−5 

−2.03

× 10−5 

−2.02

× 10−5 

−2.04

× 10−5 

−2.02

× 10−5 

1.70 × 10−7 

 

 

 

To calculate the EMF of the solenoid, Equation 7 is used. The solenoid has a radius of 0.02 m 

and an electromagnetic field of 2.51 × 10−5 T , measured using a Gaussmeter It consists of 

150 turns of copper wire. The oscillation period for each trial was determined by measuring the 

time for ten complete oscillations and then dividing by ten to obtain the period per cycle. 

 

Example calculations for 0.015kg: 

 

1- Theoretical EMF for each trial: 

Periods:  𝑇1 = 0.442s,  𝑇2= 0.470s,  𝑇3= 0.416s,  𝑇4 = 0.466s,  𝑇5 = 0.481s 

𝜀1 = −150 ∙ 𝜋 ∙ (0.02)2 ∙
4 ∙ 2.51 × 10−5

0.442
 

𝜀1 ≈ −4.29 × 10−5 V 

2- Theoretical Average EMF: 

 

𝜀𝑎𝑣𝑔 =
(−4.29) + (−4.03) + (−4.56) + (−4.07) + (−3.94)

5
 × 10−5 

= −4.1810−5 

Table.8 Individual EMF Theoretical Data Table 
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3- Theoretical EMF’s Uncertainty 

√
(−4.29 + 4.18)2 + (−4.03 + 4.18)2 + (−4.56 + 4.18)2 + (−4.07 + 4.18)2 + (−3.94 + 4.18)2

5
  × 10−5 

≈ 2.23 × 10−6 V 

ANALYSIS 

Graphs 

1- Oscillation Period vs. Mass Graph         

 

                

 

 

 

 

 

 

 

 

 

2- Theoretical Oscillation Period vs. Mass Graph 

 

 

 

 

 

 

 

 

 

  

 

 

Graph 1. Oscillation Period vs. Mass Graph                        

Graph 2. Theoretical Oscillation Period vs. Mass Graph 
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Trend Analysis & Comparison of the Graph 1 and Graph 2 

The graphs both theoretical and experimental corroborate the square-root relationship between 

oscillation period and mass, as it is anticipated from SHM theory. The theoretical graph 

proposed the best-fit, as 𝑇 = 𝑎√𝑚 + 𝑏, and the computed error bars cumulative over all mass 

ranges between ± 0.0054 s and ± 0.0112 s raised a bit in relative uncertainty to not more than 

2% under all valve of mass values. Further, the line remained significantly less apart from both 

max and min fit lines, suggesting that theoretical predictions were sharper.  

But whereas in experimental data, the maximum point still relates to the linear rising trend, the 

interval varies a lot. The error bars range from something like ±0.0971s at m=0.060m kg to 

±0.132 s at m=0.045m kg, meaning relative uncertainties go past 10% here. Also, the lines 

which talk about fit max and min get farther apart, especially for higher masses where m=0.075 

kg would show the keeping from standard of about 0.18s while the theoretical graph got only 

about 0.02s keeping apart. When they diverge, it just shows a wider measurement uncertainty 

and some other varying conditions acquired for the experiments. Despite these variations, both 

graphs maintain the expected mathematical relationship, confirming the theoretical model while 

also illustrating the impact of real-world measurement limitations. 

3- Experimental Induced EMF vs. Mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 

 Graph 3. Theoretical Oscillation Period vs. Mass Graph 
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4- Theoretical Induced EMF vs. Mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trend Analysis & Comparison of the Graph 3 and Graph 4 

Both the theoretical and experimental graphs confirm the expected inverse relationship between 

induced EMF and mass, aligning with Faraday’s Law. In the theoretical graph, the best-fit curve 

follows a smooth downward trend, with small and consistent error bars ranging from ±1.70 ×

10−7𝑉 to ±2.23 × 10−7 V, indicating low uncertainty. Additionally, the max and min fit lines 

remain close together, suggesting high precision in theoretical predictions. 

On the other hand, the experimental graph also follows the inverse trend but shows larger error 

bars, with uncertainties increasing from ±5.54 × 10−7 V at 𝑚 = 0.075kg to ±9.11 × 10−7V 

at 𝑚 = 0.030 𝑘𝑔. The max and min fit lines diverge more significantly, especially at lower 

mass values, reflecting higher variability in real-world measurements. 

The two graphs show a ratio of approximately -1.5; this further proves their almost symmetry 

with respect to the x-axis, abiding by the anticipated direction of expected EMF. From the 

analysis of the model, the negative sign in the theoretical calculations and graph is attributed to 

the fact that according to Lenz's Law, the voltage shows the direction of EMF, due to which the 

induced EMF opposes the change in magnetic flux; it does not denote absolute negative voltage. 

Graph 4. Theoretical Induced EMF vs. Mass 
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5- Induced EMF vs. Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trend Analysis of Graph 5 

The graph represents Induced EMF vs. Time, exhibiting a linear decrease in EMF as time 

progresses. The best-fit equation, 𝐸 = −2.451 × 10−5𝑡 + 4.285 × 10−5, indicates a negative 

slope, signifying that the induced EMF declines over time. Experimental data points approached 

the best-fit line closely, and deviations lay within error bars. The maximum and minimum fit 

lines, blue and red dashed lines, exhibit uncertainties in the functions with very little 

differentiations within the slope and intercept. The initial EMF at 𝑡 = 0.5𝑠 is approximately 

3.2 × 10−5𝑉, decreasing to about 1.8 × 10−5𝑉 at 𝑡 = 0.9𝑠. The correlation coefficient (𝑅) is -

0.998 in this case, which shows the near-perfect negative linear relation of induced EMF with 

time. This is a strongly supports the linear model used in the model. 

 

EVALUATION 

 

Weaknesses  

1- Damping Effects 

Damping effects, the reduction of oscillation amplitude due to dissipative forces like eddy 

currents (Rao, 2011), beyond eddy currents were considered negligible due to the low flux 

and EMF values of the magnets used. The other major forms of damping, which include 

air resistance and internal friction, normally exist in larger systems; however, in that 

Graph 5. Induced EMF vs. Time 
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instance, they were neglected given the low energy scale involved. So, the absence of these 

damping mechanisms allowed for a detailed insight into magnetic induction but at the 

expense of practical applications. Had the investigation been carried out on a larger scale 

with stronger magnets, damping effects would become significant in affecting EMF 

readings and overall system behavior.  

2- Measurement Uncertainty 

Another weakness was the measurement uncertainty, as the period calculations were 

affected by the chronometer’s precision and human reaction time. These measurements 

were conducted manually, with delays in human reaction introducing an added uncertainty, 

especially in a smaller-scale setup, where even a small delay of less than a second counts 

a lot in the recorded period. 

 

Limitations 

1- Small Scale Experimental Setup 

The low flux and EMF values of the magnets limited the consideration of damping 

effects. While this simplification allowed for a more focused analysis of magnetic 

induction, it reduced real-world applicability. 

2- Measurement Precision Constraints 

The chronometer-based timing method introduced reaction time errors, affecting period 

measurements. Additionally, the sensitivity of the galvanometer limited the precision of 

EMF readings, making it difficult to verify values with absolute accuracy. 

3- Instrumental and Setup Limitations 

The experiment relied on manual data collection, where slight misalignments in the 

spring-magnet system and measurement tools could introduce inconsistencies 

 

Ways to Improve the Investigation 

 

To improve this experiment, one can expand the experimental parameters by using stronger 

magnets with greater flux density, thus making damping effects more pronounced and allowing 

more accurate EMF measurements. Replacing manual timing techniques with a high-speed 

motion sensor or laser timing system would essentially eliminate errors in human reaction time, 

thus allowing period measurements to be more accurately determined. In addition, using a 

digital oscilloscope instead of a galvanometer would provide higher-resolution EMF 

measurements, thus reducing uncertainty in voltage determinations. Performing the experiment 
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in a controlled electromagnetic environment would help reduce interference from external 

fields, leading to more reliable data. 

 

Strengths 

1- Strong Agreement Between Theoretical and Experimental Results 

The results of the experiment agree with theoretical predictions, as most values remain 

within an acceptable range of deviation. This agreement validates the accuracy of the 

investigation. 

2- Controlled Experimental Setup 

The design minimizes external changes, reducing variables which may influence 

outcomes. It enhances consistency. 

3- Repetition of Measurements for Accuracy 

Each experiment was conducted five times, allowing for averaging out random errors 

and improving the reliability of the final results. 

 

CONCLUSION 

The experiment results supported the expected relationship between oscillation period and 

induced EMF, which had been hypothesized. Even though the magnets’ number increased with 

the total mass of the apparatus, impacting the oscillation period, longer periods suggest that it 

keeps the magnet inside the solenoid for a longer time, and the rate of change of magnetic flux 

decreases based on the hypothesis, giving lower induced EMF. Analyzing the graphs and data 

obtained, especially Graph 5, we can see a negative linear relationship indicating EMF 

decreases as mass increases, proportional to 
1

√𝑚𝑎𝑠𝑠
 

The experiment results showed that the neodymium magnets have relatively weak magnetic 

flux, and the series arrangement of the magnets did not allow the total magnitudes of the field 

to double up proportionally. Even with an increase in the number of magnets, their use had 

never brought forth comparable increments of magnetic flux, and, of course, the associated 

increase in EMF was moderately limited. 

This experiment is successful in demonstrating the relationship between changes in magnetic 

mass with oscillation period and induced EMF; however, some limitations would arise with 

respect to the measurement accuracy and the magnetic field.  The data acquired by neodymium 



 

 

30 

 

magnets shows clearly that their exhibition of the period of oscillation and of the induced EMF 

are close to those of the ideal theoretical model. This research is thereby important in explaining 

electromagnetic induction where oscillatory motion is concerned, and forms also a valid and 

strong link to explaining eddy current-type energy dissipation. 
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APPENDIX 

Appendix A: Calculation of the spring constant 

 

 

Mass(kg) Force(N) Displacement(m) Spring Constant(k) 

0.015 0.15 0.024 6.25 

0.030 0.30 0.048 6.25 

0.045 0.45 0.073 6.16 

0.060 0.60 0.097 6.18 

0.075 0.75 0.121 6.19 

Table 9. Appendix A Spring Constant Table 

https://www.collegesidekick.com/study-guides/physics/23-2-faradays-law-of-induction-lenz
https://www.collegesidekick.com/study-guides/physics/23-2-faradays-law-of-induction-lenz
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F = k ∙ x 

0.15 = k ∙ 0.024                k = 6.25 

0.30 = k ∙ 0.048                k = 6.25 

0.45 = k ∙ 0.073                k = 6.16 

0.060 = k ∙ 0.097              k = 6.18 

0.075 = k ∙ 0.121              k = 6.19 

 

6.25 + 6.25 + 6.16 + 6.18 + 6.19

5
= 6.2 𝑁/𝑚 

As per Hooke's Law, k has assumedly been constant, minor deviations have always occurred 

due to experimental limitations and measurement noises. Taking the average value of k, given 

to be 6.2 N/m, ensures a more realistic approximation. 


