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2. Introduction 

 

Elasticity of materials has always interested me, since it is an important characteristic that 

allows materials to return to their original shape after being distorted. The study of elasticity is 

an important understanding for many applications such as clothes or construction. In the IB 

physics education the basic concepts of elasticity are explained but the complex relationship 

between material properties and environmental variables is mostly ignored. So, I thought it 

would be interesting to do an investigation that explores this topic. 

 

The research question that this investigation aims to answer is: " How does the temperature 

affect Young’s modulus of a copper wire with diameter of 0.6 mm and length of 1.5 m?" The 

topic of this essay is to examine the correlation of temperature and Young's modulus of copper 

wire to present the behavior of elastic properties of copper with varying temperatures. The 

choice of copper as the material of this investigation is because of its major role in everyday 

technology and the possible implications that will help us to develop copper’s current 

applications. The goal of this essay might be useful for improving the performance of devices 

and systems that use copper components, especially in places with large temperature changes. 

 

To understand the effects of temperature on Young’s modulus of a copper wire, a series of 

experiments will be performed under controlled environmental conditions. Within a predefined 

range, a sample of copper wire will be exposed to varying temperatures (20°C, 40°C, 60°C, 

80°C, 100°C, 120°C, 140°C, 160°C, 180°C, 200°C and 220°C). Careful measurements will be 

made on the elongation of copper wire and Young's modulus will be calculated. By performing 

the calculations at each temperature, and then carefully analyzing the data, I will determine the 

relationship between both temperature and mechanical properties of copper wire. This approach 
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will allow a detailed understanding of how temperature affects the stiffness of copper wire and 

provide a basis for further exploration into the copper's properties and potential applications. 

 

2.1 Background Knowledge 

In exploring how temperature affects the Young’s Modulus of materials like copper wire, we 

need to understand the concepts of stress and strain of a material. These concepts are 

significant for understanding the behavior of materials under external forces and determining 

Young's modulus. 

 

Stress (σ) is a measure of the internal forces that particles of a material exert on each other 

when subjected to an external force. It's calculated as the force (F) applied to the material 

divided by the cross-sectional area (A) of the material through which the force is acting1: 

σ =  
𝐹

𝐴
 

Equation 1: Stress formula 

Where: 

 F is the force applied to the material (measured in newtons, N). 

 A is the cross-sectional area of the material (measured in square meters, m2). 

 σ is the stress in the material (measured in pascals, Pa). 

 

Stress essentially quantifies how much force is exerted per unit area of a material, indicating 

how strongly the material resists deformation. 

 

                                                
1 Wikipedia contributors. (2024f, February 14). Stress (mechanics). Wikipedia. 

https://en.wikipedia.org/wiki/Stress_(mechanics) 

https://en.wikipedia.org/wiki/Stress_(mechanics)
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Strain (ε), on the other hand, describes the deformation of the material because of the applied 

stress. It is defined as the ratio of the change in length (ΔL) of the material to its original length 

(L0)
2: 

ε =  
ΔL

L₀
 

Equation 2: Strain formula 

Where: 

 ΔL is the change in length of the material (measured in meters, m). 

 L0 is the original length of the material (measured in meters, m). 

 ε is the strain, a dimensionless quantity. 

 

Strain measures how much a material stretches or compresses relative to its original length, 

providing a scale to understand the extent of deformation. 

 

With the stress and strain defined, we can calculate Young's modulus (E), a critical parameter 

in the study of material properties. Young's modulus is the ratio of stress (σ) to strain (ε) and 

represents the stiffness of a material3: 

E =  
σ

ε
 

Equation 3: Young's modulus formula 

Where: 

 E is Young's modulus (measured in pascals, Pa). 

                                                
2 Wikipedia contributors. (2024f, January 29). Strain (mechanics). Wikipedia. 

https://en.wikipedia.org/wiki/Strain_(mechanics) 
3 Wikipedia contributors. (2024g, February 2). Young’s modulus. Wikipedia. 

https://en.wikipedia.org/wiki/Young%27s_modulus 

https://en.wikipedia.org/wiki/Strain_(mechanics)
https://en.wikipedia.org/wiki/Young%27s_modulus
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 σ is the stress applied to the material (measured in pascals, Pa), which is the force per 

unit area. 

 ε is the strain, representing the material's deformation in response to the applied stress 

(dimensionless). 

 

In the context of my experiment, Young's modulus will help determine how the stiffness of the 

copper wire changes with temperature.  

 

It can be assumed that the relationship between stress-strain graph will have a linear graph, as 

there are no exponential variables in equations, where the slope of this linear part corresponds 

to Young's modulus. 

 

 

Figure 1: Stress-Strain Graph4 

 

                                                
4 Wikipedia contributors. (2024e, January 25). Stress–strain curve. Wikipedia. 

https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve 

https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
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At first, as strain increases in a material such as copper, the stress follows a linearly proportional 

path as indicated by the straight line on the graph. This initial linear section indicates the 

material is behaving elastically, meaning it will return to its original shape when the stress is 

removed. 

 

However, after a point as shown in Figure 1 as the strain gets larger, the curve starts to bend 

and moves away from linear. This is the transition from elastic to plastic deformation. In this 

region, the material starts to deform permanently which means it will not return to the shape it 

was when the force was removed. This nonlinear behavior is the result of changes at the 

microscopic scale in the material's structure. 

 

In my case, I chose a mass of 0.200 kg to ensure the applied stress will be within the elastic 

limit of the copper wire, and the experiment will be restricted to the linear portion of the stress-

strain curve. This means that Young's modulus can be determined accurately. This step is 

essential because it will ensure that the deformations I observe, and measure are purely elastic, 

reversible, and characteristic of the material's true elastic properties. Working within this linear 

zone will allow me to see how temperature variations affect the elasticity of the copper wire, 

without the complications of plastic deformation. 

 

2.2 Hypothesis 

The Young's modulus of copper wire decreases as its temperature increases. 
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3. Investigation 

 

3.1 Variables 

Independent Variable: 

 Temperature of Copper Wire (T): This is the variable that will vary over the 

experiment. I will use the temperatures of 20°C, 40°C, 60°C, 80°C, 100°C, 120°C, 

140°C, 160°C, 180°C, 200°C and 220°C to determine Young’s modulus of copper wire. 

 

Dependent Variables: 

 Young's Modulus (E): This is the stiffness of the copper wire. As the temperature 

changes, Young's Modulus is expected to change, showing how the wire's stiffness is 

affected by temperature. 

 

Controlled Variables: 

 Original Length of Wire (L₀): To get the correct length for wire in tests, I will use only 

one length of copper wire (150 cm) that I will measure and keep constant. During trials, 

I will measure the wire every time with the tape measure. 

 

 Cross-Sectional Area (A): Stress calculations depend heavily on the cross-sectional 

area of the wire. Therefore, I will use a wire with the same diameter for all my 

experiments. I will use a micrometer to measure the diameter accurately. 
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 Force (F): To observe the wire's deformation under consistent conditions, I will apply 

the same force in each experiment. I will achieve this by using the same hanging mass 

(0.200 kg) across each trial. 

 

 Room temperature and Humidity: Temperature and humidity changes might affect 

the mechanical properties of the copper wire; I will conduct all my trials in a controlled 

environment. I will use air conditioning to keep these values constant. 

 

3.2 Materials 

 Copper Wire (length of 7.5 m) (diameter of 0.6 mm) 

 Bunsen Burner 

 Infrared Thermometer 

 Wooden block (0.200 kg)  

 30 cm Ruler (cm) 

 Pen and Notebook 

 Tape Mark 

 2 Heavy blocks (for tightening and stabilizing wire) 

 Pulley 

 Micrometer (mm) 

 Wire Cutter 

 Heat Resistant Gloves 

 Tape Measure 

 Digital Weigh Scale 



9 
 

 

3.1 Young’s Modulus Experiment Diagram5 

 

3.3 Methodology 

1. Connect a pulley to one edge of the table. 

2. Measure the mass of the wooden block. 

3. Measure and cut a 1.5 m length of copper wire using tape measure and wire cutters, 

ensuring a clean cut without fraying. 

4. Use the micrometer to measure the diameter of the copper wire at 5 points to calculate 

the average cross-sectional area. 

5. Secure the copper wire between two heavy blocks on a table, ensuring it's stretched 

tight. 

6. Attach a 0.200 kg wooden block to the free end of the copper wire over the pulley, using 

a simple hook mechanism, ensuring the mass hangs freely and applies tension to the 

wire. 

 

                                                
5 MME Revise. (2022, December 28). Young’s Modulus Questions and Revision | MME. 

MME. https://mmerevise.co.uk/a-level-physics-revision/youngs-modulus/ 

 

 

https://mmerevise.co.uk/a-level-physics-revision/youngs-modulus/
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7. Place a ruler on the table directly beneath the copper wire and place a tape mark directly 

above the middle of the ruler (which is 15 cm) to indicate the wire's initial position on 

the ruler. 

8. Measure and record the initial length of the copper wire between the tape mark using 

the ruler. Note this as the starting point before heating. 

9. Position Bunsen Burner behind the ruler and tape mark.  

10. Turn on the Bunsen Burner and adjust the flame to gently heat the copper wire. Avoid 

direct contact between the flame and the wire. 

11. Use the infrared thermometer to measure the temperature of the copper wire at regular 

intervals as it heats up. 

12. In every 20°C (20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220) increase in copper turn 

off the Bunsen Burner, then observe and record the displacement of the tape mark from 

its initial position on the ruler. 

13. Continue heating, recording the temperature and displacement until you reach a 

temperature 200°C more than the starting temperature. 

14. Once the maximum temperature is reached, turn off the Bunsen burner and allow the 

wire to cool down to room temperature before removing the setup and conducting 

another trial. 

15. Repeat these steps (3 to 13) 5 times to reduce random errors. 

16. Analyze data by plotting a graph and looking for general trends.  

 

4. Safety Guidelines 

 

Before I began the experiment, I followed all standard safety precautions to ensure a safe 

workspace when the open flame was involved. Because the procedure requires heat, I wore 
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heat-resistant gloves to prevent burns when working on the Bunsen burner and adjusting the 

copper wire. 

 

I also worked in an organized area free of flammable items to reduce the risk of fire hazards, 

with the Bunsen burner on a stable, heat-resistant surface, and I kept a close eye on it throughout 

the experiment to prevent accidents. 

 

During the entire experiment, I was in an area with enough ventilation to clear any smoke or 

fumes and reduce the possibility of someone having difficulty breathing or creating a flammable 

atmosphere. 

 

Before the experiment started, I verified that all equipment was in proper working order and 

safe. This involved verifying that the wire had no cuts and that the measuring devices were 

undamaged and accurate. Using faulty equipment not only could compromise the experiment’s 

results but also could bring a huge risk to my safety. 

 

5. Results 

5.1 Raw Data 

 

 

Table 1: Measured Mass of the Wooden Block with Uncertainty 

 

Digital weigh scale can measure up to 4th decimal places, so I took the uncertainty last decimal 

place, ± 0.0001 kg. 

Measured Mass (kg) ± 0.0001 (kg)

0.2034
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Table 2: Initial Length Measurements of Copper Wire with Uncertainty 

 

Tape measure can measure at least 0.1 cm, so I took the uncertainty half of that, ± 0.05 cm. 

 

 

Table 3: Diameter Measurements of Copper Wire with Uncertainty 

 

Digital micrometer can measure up to 2nd decimal places, so I took the uncertainty last decimal 

place, ± 0.01 mm. 

 

 

Table 4: Trial 1 Tape Distance Measurements with Uncertainty 

 

Trial Number Measured Length (cm) ± 0.05 cm

1 150.00

2 149.00

3 151.00

4 150.00

5 149.00

Trial
Measurement 1 

(mm) ± 0.01 mm

Measurement 2 

(mm) ± 0.01 mm

Measurement 3 

(mm) ± 0.01 mm

Measurement 4 

(mm) ± 0.01 mm

Measurement 5

(mm) ± 0.01 mm

1 0.60 0.60 0.61 0.60 0.60

2 0.61 0.61 0.60 0.61 0.61

3 0.59 0.60 0.60 0.60 0.60

4 0.60 0.61 0.61 0.60 0.61

5 0.60 0.60 0.61 0.60 0.60

Temperature (°C) Tape distance (cm) ± 0.05 cm

20 15.00

40 15.00

60 15.00

80 15.10

100 15.10

120 15.20

140 15.20

160 15.30

180 15.40

200 15.50

220 15.60
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Infrared Thermometer can measure up to 1st decimal places, but since it is a small number 

compared to the temperature range in the experiment ignored it. Ruler (30 cm) can measure at 

least 0.1 cm, so I took the uncertainty half of that, ± 0.05 cm. 

 

 

Table 5: Trial 2 Tape Distance Measurements with Uncertainty 

 

 

Table 6: Trial 3 Tape Distance Measurements with Uncertainty 

 

 

Temperature (°C) Tape distance (cm) ± 0.05 cm

20 15.00

40 15.00

60 15.10

80 15.10

100 15.20

120 15.20

140 15.30

160 15.30

180 15.40

200 15.50

220 15.60

Temperature (°C) Tape distance (cm) ± 0.05 cm

20 15.00

40 15.00

60 15.10

80 15.10

100 15.20

120 15.20

140 15.30

160 15.30

180 15.40

200 15.50

220 15.60
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Table 7: Trial 4 Tape Distance Measurements with Uncertainty 

 

 

Table 8: Trial 5 Tape Distance Measurements with Uncertainty 

 

5.2 Calculations 

I will first calculate the stress on the copper wire. To do this accurately, I need to determine the 

mean diameter of the wire from the measurements which I have made. By doing this, I can 

properly consider any slight variations in the width of the wire. Therefore, I can calculate the 

cross-sectional area of the copper wire more accurately. I will convert all measurements to 

meters. For consistency, the units for stress and strain calculations should be coherent within 

the metric system. 

 

Temperature (°C) Tape distance (cm) ± 0.05 cm

20 15.00

40 15.00

60 15.10

80 15.20

100 15.20

120 15.30

140 15.30

160 15.40

180 15.50

200 15.50

220 15.60

Temperature (°C) Tape distance (cm) ± 0.05 cm

20 15.00

40 15.00

60 15.00

80 15.10

100 15.10

120 15.20

140 15.20

160 15.30

180 15.40

200 15.50

220 15.60
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𝑥̅ =
∑ 𝑥

𝑁
 

Equation 4: Mean value formula 

 

Where: 

 𝑥̅ is the average of terms. 

 ∑ 𝑥 is the sum of terms. 

 𝑁 is the number of terms. 

 

Example calculation for mean diameter of copper wire in trial 1:  

 

(0.60 × 10−3) + (0.60 × 10−3) + (0.61 × 10−3) + (0.60 × 10−3) + (0.60 × 10−3)

5
= 0.000602

= 0.00060 (2SF to not change precision)  

 

∆𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2
 

Equation 5: Uncertainty estimation formula 

 

Where: 

 ∆𝑥 is the uncertainty. 

 𝑥𝑚𝑎𝑥 is the maximum value in the group. 

 𝑥𝑚𝑖𝑛 is the minimum value in the group. 

 

Example calculation for mean diameter uncertainty of copper wire in trial 1: 

 

(0.61×10−3) − (0.60×10−3)

2
=  0.000005 = 0.00001 (rounded to match the last decimal of mean value)   
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Table 9: Mean Copper Wire Diameter and Uncertainty for Each Trial 

 

With the mean diameter, I can use the formula for the area of a circle to calculate the cross-

sectional area (A):  

𝐴 =  𝜋(
𝑅

2
)2 

Equation 6: Area of circle formula 

 

Where: 

 R is the diameter of the wire (m).  

 𝐴  is the area of the wire's cross-section (m2).  

 

Example calculation for cross-sectional area of copper wire in trial 1: 

 

𝜋(
0.00060

2
)2 =  2.8274333882 × 10−7 =  2.827 × 10−7 (4SF ) 

 

I chose 4SF to use the value without changing too much. I will write with proper SF number at 

the end of calculations. 

 

 

Trial Mean Diameter (m) ± 0.00001 m

1 0.00060

2 0.00061 

3 0.00060 

4 0.00061 

5 0.00060 
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∆𝑦 =  𝑦 × √(
∆𝑥1

𝑥1
)

2

+  (
∆𝑥2

𝑥2
)

2

+  ⋯ + (
∆𝑥𝑛

𝑥𝑛
)

2

 

Equation 7: General Propagation of Uncertainty Formula 

Where: 

 ∆𝑦 is the uncertainty in the result 𝑦. 

 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are the measured values. 

  ∆𝑥1, ∆𝑥2, ⋯ , ∆𝑥𝑛 are the uncertainties in the measured variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 

respectively. 

 𝑦 is the result of the operation on 𝑥1, 𝑥2, ⋯ , 𝑥𝑛. 

 

Example uncertainty calculation for cross-sectional area of copper wire in trial 1: 

 

2.827 × 10−7 × √(
0.00001

0.00060
)

2

 = 9.425 × 10−9 

 

 

Table 10: Calculated Cross-sectional Areas and Uncertainties for Each Trial 

 

To calculate the force applied to the copper wire by the hanging mass, we must consider the 

mass's weight, which is the force exerted by gravity. This force (F) can be calculated using 

Newton's second law of motion: 

 

Trial Cross-sectional Area (m²) ± Uncertainty (m²)

1 2.827×10−7  ± 9.425×10−9 

2 2.922×10−7 ± 9.582×10−9

3 2.827×10−7 ± 9.425×10−9

4 2.922×10−7 ± 9.582×10−9

5 2.827×10−7 ± 9.425×10−9
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𝐹 = 𝑚𝑎 

Equation 8: Newton's second law of motion 

 

Where: 

 F is the force due to gravity (measured in newtons, N). 

 m is the mass of the object (measured in kilograms, kg). 

 a is the acceleration due to gravity (measured in meters per second squared, m/s2). 

 

For this experiment, the mass (m) of the wooden block is 0.2034 kg, and the acceleration due 

to gravity (a) is approximately 9.81 m/s2. So, the force (F) would be: 

 

0.2034 × 9.81 = 1.995354 =  1.995 N (4SF)  

 

with the uncertainty of ± 0.001 N. 

 

I can now determine the stress (σ) on the copper wire by dividing the Force (F) by the Cross-

sectional Area (A), as specified in Equation 1. 

 

Example calculation for stress of copper wire in trial 1: 

 

1.995

2.827 × 10−7
=  7056950.83126 = 7.057 × 106 (4SF) 

 

Example uncertainty calculation for stress of copper wire in trial 1: 
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7.057 × 106 × √(
9.425 × 10−9

2.827 × 10−7
)

2

+ (
0.001

1.995
)

2

 = 2.353 × 105 

 

 

Table 11: Calculated Stress and Uncertainties for Each Trial 

 

Moving forward in my calculations, I will now calculate the strain experienced by the copper 

wire. To accomplish this, I need the initial length of the wire (L0) and the change in the length 

(ΔL). I measured the original length of the copper wire on Table 2 and the tape distance of every 

trial in Table 4, Table 5, Table 6, Table 7, and Table 8. So, I will calculate the distance changed from 

starting point (15 cm) and turn centimeter (cm) values to meter (m): 

 

Example calculation for initial length of copper wire in trial 1: 

 

150 × 10−2 = 1.5000 (4 decimals to match uncertainty) 

 

Example uncertainty calculation for initial length of copper wire in trial 1: 

  

0.05 × 10−2 = 0.0005  

 

Trial Stress (Pa) ± Uncertainty (Pa)

1 7.057×106 2.353×105

2 6.828×106 2.239×105

3 7.057×106 2.353×105

4 6.828×106 2.239×105

5 7.057×106 2.353×105
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Table 12: Initial Length of Copper Wire in Meters with Uncertainty 

 

Example calculation for tape displacement in trial 1 temperature 60°C : 

 

0.1510 − 0.1500 = 0.0010 

 

 

Table 13: Calculated Tape Mark Displacement at Various Temperatures with Uncertainties 

 

With change in the length (ΔL) for each trial’s temperatures are calculated, I can now divide 

change in the length (ΔL) to initial length (L0) to calculate strain (ε): 

 

Example calculation for strain in trial 1 temperature 80°C: 

 

0.0010

0.1500
= 0.006666666 = 6.67 × 10−4 

 

 

Trial Number Measured Length (m) ± 0.0005 m

1 1.5000

2 1.4900

3 1.5100

4 1.5000

5 1.4900

Temperature (°C)
Tape displacement for 

Trial 1 (m) ± 0.0005 (m)

Tape displacement for 

Trial 2 (m) ± 0.0005 (m)

Tape displacement for 

Trial 3 (m) ± 0.0005 (m)

Tape displacement for 

Trial 4 (m) ± 0.0005 (m)

Tape displacement for 

Trial 5 (m) ± 0.0005 (m)

20 0.0000 0.0000 0.0000 0.0000 0.0000

40 0.0000 0.0000 0.0000 0.0000 0.0000

60 0.0000 0.0010 0.0010 0.0010 0.0000

80 0.0010 0.0010 0.0010 0.0020 0.0010

100 0.0010 0.0020 0.0020 0.0020 0.0010

120 0.0020 0.0020 0.0020 0.0020 0.0020

140 0.0020 0.0030 0.0030 0.0030 0.0020

160 0.0030 0.0030 0.0030 0.0030 0.0030

180 0.0040 0.0040 0.0040 0.0040 0.0040

200 0.0050 0.0050 0.0050 0.0050 0.0050

220 0.0060 0.0060 0.0060 0.0060 0.0060
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Example uncertainty calculation for strain in trial 1 temperature 80°C: 

 

6.67 × 10−4 × √(
0.0005

0.1500
)

2

+ (
0.0005

0.0010
)

2

 = 0.0003333333 = 3.33 × 10−4  

 

 

Table 14: Calculated Strain at Fixed Temperatures with Uncertainties 

 

After calculating the values of stress (σ) and strain (ε), I can now find the Young's modulus (E): 

 

Example calculation for Young's modulus (E) in trial 1 temperature 80°C: 

 

7.057 × 106

6.67 × 10−4
=  10580209895.0524 = 1.06 × 1010(3SF) 

 

Example uncertainty calculation for Young's modulus (E) in trial 1 temperature 80°C: 

 

1.06 × 1010 × √(
2.353 × 105

7.057 × 106
)

2

+ (
3.33 × 10−4

6.67 × 10−4
)

2

 = 5.25 × 109  

 

 

Temperature (°C) Trial 1 Strain (ε) Trial 2 Strain (ε) Trial 3 Strain (ε) Trial 4 Strain (ε) Trial 5 Strain (ε)

20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

40 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

60 0.00 ± 0.00 6.71x10-4±3.4x10-4 6.62x10-4±3.3x10-4 6.67x10-4± 3.3x10-4 0.00 ± 0.00

80 6.67x10-4 ± 3.3x10-4 6.71x10-4 ± 3.4x10-4 6.62x10-4 ± 3.3x10-4 1.33x10-3± 3.3x10-4 6.71x10-4± 3.4x10-4

100 6.67x10-4 ± 3.3x10-4 1.34x10-3 ±3.4x10-4 1.32x10-3 ± 3.3x10-4 1.33x10-3± 3.3x10-4 6.71x10-4± 3.4x10-4

120 1.33x10-3 ± 3.3x10-4 1.34x10-3 ± 3.4x10-4 1.32x10-3 ± 3.3x10-4 1.33x10-3± 3.3x10-4 1.34x10-3± 3.4x10-4

140 1.33x10-3 ± 3.3x10-4 2.01x10-3 ± 3.4x10-4 1.99x10-3 ± 3.3x10-4 2.00x10-3± 3.3x10-4 1.34x10-3± 3.4x10-4

160 2.00x10-3 ± 3.3x10-4 2.01x10-3 ± 3.4x10-4 1.99x10-3 ± 3.3x10-4 2.00x10-3± 3.3x10-4 2.01x10-3± 3.4x10-4

180 2.67x10
-3 

± 3.3x10
-4

2.68x10
-3

 ± 3.4x10
-4

2.65x10
-3

 ± 3.3x10
-4

2.67x10
-3

± 3.3x10
-4

2.68x10
-3

± 3.4x10
-4

200 3.33x10
-3 

± 3.3x10
-4

3.36x10
-3

 ± 3.4x10
-4

3.31x10
-3

 ± 3.3x10
-4

3.33x10
-3

± 3.3x10
-4

3.36x10
-3

± 3.4x10
-4

220 4.00x10
-3 

± 3.3x10
-4

4.03x10
-3

 ± 3.4x10
-4

3.97x10
-3

 ± 3.3x10
-4

4.00x10
-3

± 3.3x10
-4

4.03x10
-3

± 3.4x10
-4
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Table 15: Calculated Young’s Modulus at Fixed Temperatures with Uncertainties 

 

In some cells of the table, the value NaN (Not a Number) appears, indicating that data is not 

available for those specific entries. Since Young's Modulus is defined as stress divided by strain, 

if the strain is zero, this results in a division by zero scenario, which is mathematically 

undefined. 

 

I will next calculate the mean Young's Modulus for each temperature point where valid 

measurements are available. By averaging the values from the individual trials and excluding 

the NaN I will obtain a more reliable estimate of the copper's elastic behavior under different 

thermal conditions. This average will help to reduce any experimental inconsistencies and 

provide a singular, more accurate Young's Modulus value at each given temperature. 

 

Example calculation for mean Young's modulus (E) temperature 80°C: 

 

(1.06 × 1010) + (1.02 × 10¹⁰) + (1.07 × 10¹⁰) + (5.13 × 10⁹) + (1.05 × 10¹⁰)

5

= 9.426 × 109 = 9.43 × 109 (3SF)  

 

 

 

Temperature (°C)
Trial 1 Young's Modulus 

(Pa ± Pa )

Trial 2 Young's Modulus 

(Pa ± Pa )

Trial 3 Young's Modulus 

(Pa ± Pa )

Trial 4 Young's Modulus 

(Pa ± Pa )

Trial 5 Young's Modulus 

(Pa ± Pa )

20 NaN NaN NaN NaN NaN

40 NaN NaN NaN NaN NaN

60 NaN 1.02×10¹⁰ ± 5.17×10⁹ 1.07×10¹⁰ ± 5.33×10⁹ 1.02×10¹⁰ ± 5.08×10⁹ NaN

80 1.06×10¹⁰ ± 5.25×10⁹ 1.02×10¹⁰ ± 5.17×10⁹ 1.07×10¹⁰ ± 5.33×10⁹ 5.13×10⁹ ± 1.29×10⁹ 1.05×10¹⁰ ± 5.34×10⁹

100 1.06×10¹⁰ ± 5.25×10⁹ 5.10×10⁹ ± 1.30×10⁹ 5.35×10⁹ ± 1.35×10⁹ 5.13×10⁹ ± 1.29×10⁹ 1.05×10¹⁰ ± 5.34×10⁹

120 5.31×10⁹ ± 1.33×10⁹ 5.10×10⁹ ± 1.30×10⁹ 5.35×10⁹ ± 1.35×10⁹ 5.13×10⁹ ± 1.29×10⁹ 5.27×10⁹ ± 1.35×10⁹

140 5.31×10⁹ ± 1.33×10⁹ 3.40×10⁹ ± 5.85×10⁸ 3.55×10⁹ ± 6.00×10⁸ 3.41×10⁹ ± 5.74×10⁸ 5.27×10⁹ ± 1.35×10⁹

160 3.53×10⁹ ± 5.94×10⁸ 3.40×10⁹ ± 5.85×10⁸ 3.55×10⁹ ± 6.00×10⁸ 3.41×10⁹ ± 5.74×10⁸ 3.51×10⁹ ± 6.05×10⁸

180 2.64×10⁹ ± 3.38×10⁸ 2.55×10⁹ ± 3.34×10⁸ 2.66×10⁹ ± 3.43×10⁸ 2.56×10⁹ ± 3.27×10⁸ 2.63×10⁹ ± 3.45×10⁸ 

200 2.12×10⁹ ± 2.22×10⁸ 2.03×10⁹ ± 2.16×10⁸ 2.13×10⁹ ± 2.24×10⁸ 2.05×10⁹ ± 2.14×10⁸ 2.10×10⁹ ± 2.24×10⁸

220 1.76×10⁹ ± 1.57×10⁸ 1.69×10⁹ ± 1.53×10⁸ 1.78×10⁹ ± 1.59×10⁸ 1.71×10⁹ ± 1.52×10⁸ 1.75×10⁹ ± 1.59×10⁸ 



23 
 

Example uncertainty calculation for mean Young's modulus (E) temperature 80°C: 

 

(1.07 × 10¹⁰) − (5.13 × 10⁹)

2
= 2.785 × 109 = 2.79 × 109 = 

 

 

Table 16: Mean Young’s Modulus and Uncertainty for Each Fixed Temperature 

 

6. Analysis 

 

I will start by plotting the calculated mean Young's modulus for each temperature range against 

the respective temperature to have a visual understanding of how the material changes its 

behavior under different thermal conditions. By analyzing the graph trends, I will understand 

how the material elasticity changes with temperature. 

 

 

Temperature (°C) Mean Young's Modulus (Pa) ± Uncertainty (Pa)

20 NaN

40 NaN

60 1.04×10¹⁰ ± 2.50×108

80 9.43×10⁹ ± 2.79×10⁹

100 7.34×10⁹ ± 2.75×10⁹

120 5.23×10⁹ ± 1.25×10⁸

140 4.19×10⁹ ± 9.55×10⁸

160 3.48×10⁹ ± 7.50×10
7

180 2.61×10⁹ ± 5.50×10
7

200 2.09×10⁹ ± 5.00×10
7

220 1.74×10⁹ ± 4.50×10
7
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Graph 1: Young's Modulus against Temperature Graph (Made with Matplotlib) 

 

The general trend of the graph shows that the Young's modulus is inversely proportional to 

temperature, meaning as the temperature increases, the Young's modulus decreases. This 

supports my hypothesis that Young’s modulus of copper wire decreases with increasing 

temperature. The best fit curve clearly illustrates this negative correlation and inverse 

proportionality. 

 

The R² value for this data set is 0.943, which is close to 1. This high R² value suggests a high 

degree of correlation between temperature and Young's modulus for the copper wire, indicating 

that temperature is a strong influencer of the modulus in this context. 

 

To gain a better understanding of the relationship between temperature and Young's modulus, 

I will transform the data to present a linear graph. This will allow me to analyze the trend more 

effectively and make the relationship clearer. By doing so, I can more accurately determine how 

changes in temperature affect Young's modulus. 
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Graph 2: Transformed Young's Modulus against Temperature Graph (Made with Matplotlib) 

 

The data demonstrates a positive linear relationship between temperature and the negative 

natural logarithm of Young's modulus. I made this by transforming Young’s Modulus with the 

natural logarithm function due to the data's exponential nature. The best-fit line, which passes 

through the origin (0,0), indicates a direct proportionality between temperature and the 

transformed Young's modulus, with an offset of 23.84. This transformation enables a more 

interpretable relationship between temperature and Young's modulus, suggesting that as 

temperature increases, the negative natural logarithm of Young's modulus changes 

proportionally, with an additional offset of 23.84. 

 

The R² value for the best fit line is approximately 0.994, indicating a very high degree of 

correlation between temperature and the natural logarithm of Young's Modulus. This suggests 

that the linear model provides a good fit to the transformed data. 
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6.1 Calculating Slope Uncertainty 

Slope = 0.01 Pa 

 

Next, I will calculate slope uncertainty to see the uncertainty in the graph: 

 

𝑆𝑙𝑜𝑝𝑒 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  
𝑀𝑎𝑥 𝑆𝑙𝑜𝑝𝑒 − 𝑀𝑖𝑛 𝑆𝑙𝑜𝑝𝑒

2
 

 

0.01 − 0.01

2
= 0.00 

 

Slope and slope uncertainty: 

0.01 ± 0.00 Pa 

 

The low slope and zero uncertainty findings are because of the limited measurement sensitivity 

of the 30 cm ruler used in the experiment when measuring tape displacement. This measurement 

method had insufficient precision to accurately capture minimal changes in Young's modulus. 

 

7. Conclusion 

 

This essay aimed to investigate the effect of temperature on Young’s modulus of copper wire, 

hypothesizing that Young's modulus decreases as temperature increases. This was explored 

through an experimental setup involving the manipulation of temperature of copper wire, while 

measuring the elongation under a constant applied force on certain points. The data collected 

provided insights into the copper's elastic behavior under varying thermal conditions. 
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The results strongly support my initial hypothesis. There was an inverse relationship between 

temperature and Young's modulus, plotted by a decreasing trend in Graph 1. The high R² value 

obtained from the graph (0.9913) proves the reliability of this trend, showing a significant 

correlation between temperature and the Young’s modulus. 

 

The analysis was further enhanced through a transformation that presented a linear relationship 

between temperature and the negative natural logarithm of Young's modulus. This approach 

confirmed the inverse proportionality and determined the relationship. 

 

In conclusion, this experiment validates the hypothesis that Young’s modulus of copper wire 

decreases as its temperature increases. This conclusion came from both the direct analysis of 

Young's modulus against temperature and the transformed linear relationship. This experiment 

illustrates the importance of considering thermal effects in the application of copper and similar 

materials in engineering and design, where temperature variations could impact material 

performance. 

 

7.1 Improvements 

1. The measurement sensitivity of the 30 cm ruler used for measuring tape displacement 

impacted the precision of measurements. Using a more precise measuring instrument, 

such as a digital caliper could significantly improve the accuracy of displacement 

measurements, thereby improving the reliability of the calculated strain and Young's 

modulus values. 
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2. The experiment relied on manual observation and recording of temperature and 

displacement at each fixed temperature, which could introduce human error. 

Implementing automated data systems, such as digital temperature sensors and 

displacement transducers connected to a computer, would allow for continuous and 

more accurate data collection, reducing potential observational errors. 

 

3. The thermal distribution along the copper wire might not have been uniform due to the 

localized application of heat from the Bunsen burner. A more controlled heating 

method, such as an electrically heated wire or a temperature-controlled oven, could 

ensure a uniform temperature distribution across the wire, leading to more consistent 

and reliable measurements. 

 

7.2 Strengths 

1. The experiment's design effectively isolates the effect of temperature on Young's 

modulus by controlling other variables such as the original length of the wire, cross-

sectional area, and the force applied. This control ensures that any observed changes in 

Young's modulus can be attributed to temperature variations. 

 

2. Using a wide range of temperature points (from 20°C to 220°C) provides a detailed 

view of how Young's modulus changes across a temperature spectrum. This extensive 

data set allows for a detailed analysis of the thermal sensitivity of copper's mechanical 

properties. 
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