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I. INTRODUCTION 

 Artificial intelligence (AI) and machine learning (ML) algorithms have seen a 

tremendous advancement in the past decade. Programming modules have gained popularity for 

enabling the creation of artificial neural networks (ANNs) with ease and efficiency. For the 

past year I have been learning the mathematics behind ANNs and have gained experience 

constructing them from the ground-up. It is my belief that ML is the technology of the future, 

as it could help humans in many areas, such as those with disabilities. Before starting this 

project, I had the intention of developing software that would make people’s lives easier. I 

eventually came up with the idea of enabling people to use computers in the simplest way 

possible, with eye movement. With software that could track eye movement, many people 

would gain the ability to control a cursor without the need of using a mouse. 

 

Figure 1: Stephen Hawking uses an Intel device that helps him artificially communicate. 

 Stephen Hawking had amyotrophic lateral sclerosis (ALS) which is a disease that limits 

the ability to activate muscles over time. This meant that his ability to communicate would 

eventually diminish. To enable Hawking to regain his ability to communicate, Intel developed 

a device that tracked the muscle movement in his cheek. By activating the muscle, he was able 

to select words from the monitor and an artificial voice would pronounce them. However, many 

ALS patients do not lose the ability to control their eyes. By creating a software that analyzes 
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eye movement, disabled individuals could be gain the ability to communicate by controlling a 

device. 

 Previously, there has been work pertaining gaze tracking that uses a binocular setup1, 

but little work has been conducted on gaze tracking via a monocular setup2. Most of monocular 

gaze tracking methods require some sort of setup that involves the utilization of other objects 

for fixating the camera. In this paper, I present an on-screen gaze tracking technique, using an 

ANN, that can be used with any device with a monocular camera. My technique involves the 

usage of pre-trained face landmark and gaze predictors, which provide the 2D coordinates of 

specific facial landmarks (e.g., the eyelids, points that make up the facial outline), information 

about pupil coordinates, and not-to-scale values that represent gaze direction from an image of 

a face (e.g., how far to the left or how far up the person is looking, represented by a scalar 

value). These predictors are used to gather a dataset and train an ANN to correlate this data 

with actual on-screen coordinates that indicate where on the device monitor the user is looking 

at. The technique is not generalizable, meaning that it can only be tailored for a single user. 

Calibration is done by collecting data of the user looking at pre-defined points on the screen 

and using it to train the ANN, as per the explanation in Section IV. To the best of my knowledge, 

it is the first time such a technique has been used. 

ML is an advanced topic, generally taught as a master’s course, and I have tried my best 

to explain it as understandably as possible. I have explained the mathematics involved; 

 
1 Hennessey, Craig, and Peter Lawrence. “Noncontact Binocular Eye-Gaze Tracking for Point-of-Gaze 

Estimation in Three Dimensions.” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, Mar. 2009, pp. 

790–99. DOI.org (Crossref), https://doi.org/10.1109/TBME.2008.2005943. 

 
2 Feng, Yu, et al. “Real-Time Gaze Tracking with Event-Driven Eye Segmentation.” 2022 IEEE 

Conference on Virtual Reality and 3D User Interfaces (VR), IEEE, 2022, pp. 399–408. DOI.org 

(Crossref), https://doi.org/10.1109/VR51125.2022.00059. 

 



5 
 

however, this topic requires a lot of thinking to grasp, thus it may be reasonable to go over the 

preliminaries for a while before moving onto the main content. I have categorized this project 

as mathematics because it heavily relies on calculus, and computers are just used to automate 

the mathematical calculations involved. 

II. PRELIMINARIES 

II.A. Matrices 

 A matrix is an array of numbers arranged in a rectangular pattern. It is made up 

of rows and columns, where a row is a horizontal list of numbers and a column a vertical 

list of numbers. For example, in the following matrix 

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] 

the rows are [𝑎, 𝑏, 𝑐], [𝑑, 𝑒, 𝑓] and [𝑔, ℎ, 𝑖]; and the columns are [𝑎, 𝑑, 𝑔], [𝑏, 𝑒, ℎ] and 

[𝑐, 𝑓, 𝑖]. The size of a matrix is indicated through the notation, 𝑀 ∈ ℝ𝑟×𝑐, where 𝑟 is 

the number of rows, 𝑐 is the number of columns and ℝ indicates that the numbers are 

real. The following operations can be done with matrices: 

Matrix addition 

𝑀1 ∈ ℝ𝑟×𝑐 , 𝑀2 ∈ ℝ𝑟×𝑐 

(𝑀1 + 𝑀2) ∈ ℝ𝑟×𝑐 

[

𝑎1 𝑏1 𝑐1

𝑑1 𝑒1 𝑓1

𝑔1 ℎ1 𝑖1

] + [

𝑎2 𝑏2 𝑐2

𝑑2 𝑒2 𝑓2

𝑔2 ℎ2 𝑖2

] = [

𝑎1 + 𝑎2 𝑏1 + 𝑏2 𝑐1 + 𝑐2

𝑑1 + 𝑑2 𝑒1 + 𝑒2 𝑓1 + 𝑓2

𝑔1 + 𝑔2 ℎ1 + ℎ2 𝑖1 + 𝑖2

] 
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Matrix multiplication 

𝑀1 ∈ ℝ𝑟1×𝑐1 , 𝑀2 ∈ ℝ𝑐1×𝑐2 

(𝑀1𝑀2) ∈ ℝ𝑟1×𝑐2 

[
𝑎1 𝑏1

𝑐1 𝑑1
] [

𝑎2 𝑏2

𝑐2 𝑑2
] = [

𝑎1𝑎2 + 𝑏1𝑐2 𝑎1𝑏2 + 𝑏1𝑑2

𝑐1𝑎2 + 𝑑1𝑐2 𝑐1𝑏2 + 𝑑1𝑑2
] 

[
𝑎1 𝑏1 𝑐1

𝑑1 𝑒1 𝑓1
] [

𝑎2

𝑏2

𝑐2

] = [
𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2

𝑑1𝑎2 + 𝑒1𝑏2 + 𝑓1𝑐2
] 

Matrix transpose 

𝑀 ∈ ℝ𝑟×𝑐 

𝑀𝑇 ∈ ℝ𝑐×𝑟 

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]

𝑇

= [
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

] 

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

]
𝑇

= [
𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

] 

Matrix scalar operations 

𝑀 ∈ ℝ𝑟×𝑐 , 𝑢 ∈ ℝ 

(𝑀 + 𝑢), (𝑀 ⋅ 𝑢) ∈ ℝ𝑟×𝑐 

[
𝑎 𝑏
𝑐 𝑑

] + 𝑢 = 𝑢 + [
𝑎 𝑏
𝑐 𝑑

] = [
𝑎 + 𝑢 𝑏 + 𝑢
𝑐 + 𝑢 𝑑 + 𝑢

] 

[
𝑎 𝑏
𝑐 𝑑

] ⋅ 𝑢 = 𝑢 ⋅ [
𝑎 𝑏
𝑐 𝑑

] = [
𝑎 ⋅ 𝑢 𝑏 ⋅ 𝑢
𝑐 ⋅ 𝑢 𝑑 ⋅ 𝑢

] 
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II.B. Back Propagation 

 A function can be defined as 𝑓(𝑥) = 𝜔𝑥 + 𝛽  where 𝜔  is the ‘weight’ and 𝛽  is the 

‘bias’. The weight is initialized randomly in the range of [−1,1] and the bias is initialized as 0. 

There can be different methods of initialization depending on preference, but in general the 

weight is initialized randomly. The objective is to have this function output specific values, 

given specific inputs. This is where back propagation is employed. Back propagation assigns 

values to the weight and bias such that the function fits a given dataset. A dataset is a collection 

of pre-defined input and output values with which we are trying to find a function 𝑓(𝑥) that 

best represents this dataset. In other words, we are producing a best-fit line by optimizing a 

function. This is done via partial derivatives and a cost (loss) function. 

 Partial derivatives are used to take the derivative of a specific variable in a multivariable 

function. During this process, all other variables are treated as constants. For example, if I were 

to take the partial derivative of 𝑓(𝑥) with respect to 𝜔, I would treat 𝑥 and 𝛽 as constants. This 

means that the value of 𝑥 has an impact on the outcome this partial derivative. 

  A loss function evaluates how far off a prediction is from what it is supposed to be. For 

example, if 𝑓(0) = 1, when the output is supposed to be 3, it would result in a bigger loss than 

if 𝑓(0) = 2 which is closer to 3. A popular loss function is L2 Loss, given by 

ℒ2(𝑦̂, 𝑦) = ‖𝑦̂ − 𝑦‖2
2  and returns the squared distance of the prediction of the function           

𝑦̂ = 𝑓(𝑥) from the ground-truth (what we want the output to be), 𝑦 . Loss functions must 

always output a positive value. Furthermore, the derivative of the loss function with respect to 

𝑦̂ essentially indicates the direction (negative, positive or 0) in which the value of 𝑦̂ should 

move to increase the output of the loss function. By negating this derivative, the direction 

which 𝑦̂ must move to reduce the loss is obtained. The ultimate objective is to have the loss 

function output a value as small as possible. The smaller the loss, the closer the function is to 
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what we want it to be. Since 𝑦̂ = 𝑓(𝑥), the chain-rule of derivatives can be applied with respect 

to the weight and bias. 

 ∇𝜔ℒ(𝑓(𝑥), 𝑦) =
𝛿ℒ(𝑓(𝑥), 𝑦)

𝛿𝜔
=

𝛿ℒ(𝑓(𝑥), 𝑦)

𝛿𝑓(𝑥)
⋅

𝛿𝑓(𝑥)

𝛿𝜔
 Eq. (1) 

 ∇𝛽ℒ(𝑓(𝑥), 𝑦) =
𝛿ℒ(𝑓(𝑥), 𝑦)

𝛿𝛽
=

𝛿ℒ(𝑓(𝑥), 𝑦)

𝛿𝑓(𝑥)
⋅

𝛿𝑓(𝑥)

𝛿𝛽
 Eq. (2) 

where ℒ(𝑓(𝑥), 𝑦) is the loss function, ∇𝜔 and ∇𝛽 mean “partial derivative with respect to 𝜔 

and 𝛽” respectively, and 𝛿 is the equivalent of ‘d’ used for normal derivatives. If we negate 

these derivatives, we end up with values that indicate the direction in which 𝜔 and 𝛽 must 

move to reduce the output of the loss function. These values can then be used to update 𝜔 and 

𝛽. 

 𝜔′ = 𝜔 − 𝜂∇𝜔ℒ(𝑓(𝑥), 𝑦) Eq. (3) 

 𝛽′ = 𝛽 − 𝜂∇𝛽ℒ(𝑓(𝑥), 𝑦) Eq. (4) 

where 𝜂 is the ‘learning rate’, generally initialized as 1 ≫ 𝜂 > 0 and sometimes decreased 

over time.  𝜔′ and 𝛽′ are the updated values of  𝜔 and 𝛽. Note that back propagation does not 

instantly update the values to the most optimal, back propagation is done several times and 

over time the function becomes more and more optimized. The algorithm which manipulates 

the learning rate is called a ‘scheduler’. The decreasing of the learning rate helps with the 

preciseness of the optimization as the loss function reaches its ‘minima’. A minimum is the tip 

of a convex curve where the output of the loss function is minimal. There may be local minima 

and a global minimum. The global minimum is the lowest point of the loss function, and the 

local minima are the minima which are not the global minimum. As the output of the loss 

function gets closer to a minimum, the amount that we change the values of 𝜔 and 𝛽 must 

decrease (by decreasing the value of 𝜂) in order to ensure that we can be as precise as possible. 

In reality, we do not know where these minima are located, but we know that over time, back 
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propagation will bring the function closer to a minimum, so for every time we use back 

propagation, we can decrease the value of 𝜂. 

This example was the simplest form of optimization via back propagation. Depending 

on the use-case, different ‘optimizers’ with complicated algorithms may be used to update the 

weight and bias. Back propagation for MLPs is explained in more detail in Section II.C. 

II.C. Multi-Layer Perceptron 

 An MLP (multi-layer perceptron) is a function that can take multiple inputs and produce 

multiple outputs. It is built using two types of functions: “layers” and “activation functions”. 

A sequence of these functions is chained together to produce one complex function called an 

MLP. While layers are linear functions, activation functions are generally non-linear. Given as 

an example in the previous section, layers are similar to 𝑓(𝑥) = 𝜔𝑥 + 𝛽, but instead of 𝑥 being 

a scalar value, it is in vector form, 𝑥 ∈ ℝ𝑎. A layer must be defined in such a way that the 

output does not have to be the same sized vector as 𝑥, and this is where matrices come into 

play. In a layer, 𝜔 is a matrix 𝜔 ∈ ℝ𝑎×𝑏, where 𝑎 is the size of the input vector, and 𝑏 is the 

size of the output vector. Consequently, the size of 𝛽 must match the size of the output, hence 

𝛽 ∈ ℝ𝑏. This is formalized into: 

 𝑙(𝑋) = 𝒲𝑇𝑋 + ℬ Eq. (5) 

where 𝒲𝑇 is the transpose of 𝒲 ∈ ℝ𝑎×𝑏; ℬ ∈ ℝ𝑏 and 𝑋 ∈ ℝ𝑎; where 𝑎 and 𝑏 are the sizes 

of the input and output vectors respectively. A layer is usually denoted as (𝑎 × 𝑏), indicating 

the vector size it takes as input and the output size it returns. 

 Although layers must always be in the format of Eq. (5), activation functions can be 

of any nature. For example, the sigmoid activation function is as follows: 
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 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 Eq. (6) 

This activation function has a range of (0,1). Such a function guarantees that the output always 

lies between 0 and 1. This is useful in many aspects, such as if you wanted an MLP to output 

a value that indicated whether something is TRUE or FALSE; you could put a sigmoid 

activation function at the end of the MLP and round the output to the nearest 0 or 1, where 0 

means FALSE and 1 means TRUE. Now, set the output vector size to 64, and the MLP will 

return a 64-bit binary value. 

 I have mentioned before that an MLP is a chain of layers and activation functions. What 

I mean by that is this: 

 ℳ(𝑋) = 𝒜𝑁 (𝑙𝑁 (𝒜𝑁−1 (𝑙𝑁−1 (… 𝒜1(𝑙1(𝑋)))))) Eq. (7) 

ℳ(𝑋) is an MLP where 𝑙𝑛 is the 𝑛𝑡ℎ layer, 𝒜𝑛 is the activation function of 𝑙𝑛, and 𝑁 is the 

total number of layers. Note that activation functions are not a requirement in the construction 

of MLPs and can be placed in any sequence. 

 Back propagation works the same way with MLPs as described in Section II.B. Eq. (8) 

gives an explicit example of how the chain-rule is used in MLPs. 

 ∇𝒲𝑛
ℒ(ℳ(𝑋1), 𝑦) = 

𝛿ℒ(ℳ(𝑋1), 𝑦)

𝛿𝒜𝑁(𝑙𝑁(𝑋𝑁))
⋅

𝛿𝒜𝑁(𝑙𝑁(𝑋𝑁))

𝛿𝑙𝑁(𝑋𝑁)
⋅

𝛿𝑙𝑁(𝑋𝑁)

𝛿𝑋𝑁
⋅

𝛿𝑋𝑁

𝛿𝑙𝑁−1(𝑋𝑁−1)
⋯

𝛿𝑋𝑛+1

𝛿𝑙𝑛(𝑋𝑛)
⋅

𝛿𝑙𝑛(𝑋𝑛)

𝛿𝒲𝑛
 Eq. (8) 

𝒲𝑛  is the weight matrix of the 𝑛𝑡ℎ  layer; 𝑋𝑛 = 𝒜𝑛−1(𝑙𝑛−1(𝑋𝑛−1)) and 𝑋1  is the MLP input 

vector. The derivative of the loss function with respect to the bias vector of the 𝑛𝑡ℎ  layer is 

calculated the same way, the only difference being 𝒲𝑛 replaced with ℬ𝑛 in the notation. 

II.D. Mean Squared Error 

 MSE loss (Mean Squared Error) is the mean of the square of the difference between the 

prediction and ground-truth of each index of the vectors: 
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 𝑀𝑆𝐸(𝑌̂, 𝑌) =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 Eq. (9) 

where 𝑛 is the size of the MLP output vector. The partial derivative of MSE with respect to the 

prediction is: 

 ∇𝑌̂𝑀𝑆𝐸(𝑌̂, 𝑌) =
−2

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

𝑛

𝑖=1

 Eq. (10) 

An aspect that makes MSE useful is that its output gets exponentially smaller as the prediction 

gets closer to the ground-truth. 

II.E. Rectified Linear Unit 

 ReLU (Rectified Linear Unit) is an activation function that has a range of [0, ∞): 

 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 Eq. (11) 

The derivative of ReLU yields: 

 𝑅𝑒𝐿𝑈′(𝑥) = {
1, 𝑥 > 0
0, 𝑥 < 0

 Eq. (12) 

   

ReLU serves as something like a criterion, “the value is required to be at a certain standard in 

order to pass”. 

II.F. Exponential Learning Rate Scheduler 

 The exponential LR scheduler exponentially decays the learning rate by 𝛾 after every 

epoch (an epoch is each time we optimize the MLP). Formally, it is defined as: 

 𝜂𝑡 = 𝜂0𝛾𝑡 Eq. (13) 

where 𝜂𝑡 is the learning rate after 𝑡 number of epochs,  𝑡 ∈ ℤ ≥ 0 is the number of epochs that 

has elapsed, 0 < 𝛾 < 1 is the decay rate, and 𝜂0 is the initial learning rate. The exponential LR 
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scheduler allows finer adjustments in weights and biases as training proceeds and the MLP gets 

closer to convergence (fully optimized). The smaller the 𝛾 value, the faster the learning rate 

will shrink over time. 

II.G. Facial Landmark Prediction 

 

Figure 2: The 68 landmarks of the “68 face landmarks” format3. 

Facial landmarks are pre-defined points on a face that correspond to specific features. 

The process of predicting the position of these landmarks in an image, through an algorithm or 

function, is called “facial landmark prediction”. It is commonly used in computer vision for 

purposes such as emotion detection4. A set of landmarks in an image of a face is denoted as 

ℱ ∈ ℝ𝑁×2 where 𝑁 is the number of landmarks. Each element of ℱ corresponds to a single 

landmark with two coordinates indicating its position in a 2D image. A widely used format of 

facial landmarks is the “68 face landmarks”, as its name suggests it consists of labels for 68 

different landmarks on the face (see Figure 2). 

 
3 Shen, Xunbing, et al. “Catching a Liar Through Facial Expression of Fear.” Frontiers in Psychology, vol. 12, 

2021. Frontiers, https://www.frontiersin.org/articles/10.3389/fpsyg.2021.675097. 

4 Khabarlak, Kostiantyn, and Larysa Koriashkina. “Fast Facial Landmark Detection and Applications: A 

Survey.” Journal of Computer Science and Technology, vol. 22, no. 1, Apr. 2022, p. e02. arXiv.org, 

https://doi.org/10.24215/16666038.22.e02. 
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III. NETWORK ARCHITECTURE 

 The network consists of two modules: the “Prior Module” and “MLP Module”. The 

prior module is a pre-trained face landmark and gaze predictor that returns 68 face landmarks 

and gaze information from an image of a face5. Gaze information includes the following: left 

pupil and right pupil coordinates (each ℝ2), horizontal ratio of gaze (−1, 1), vertical ratio of 

gaze (−1, 1), eyes being closed or open (0 or 1); whether the user is looking to the left, right, 

or center (each 0 or 1). Of the information provided by the prior module, only a selected portion 

is used as input to the MLP. This includes the following: 37th to 48th indices inclusive of the 68 

face landmarks (the landmarks associated with eyes), both pupil coordinates, horizontal and 

vertical ratio of gaze. That adds up to an input vector of size 30 (coordinates are stacked 

individually rather than as pairs). 

 The MLP architecture is as follows: 

1. Layer (30x128) 

2. ReLU Activation 

3. Layer (128x128) 

4. ReLU Activation 

5. Layer (128x2) 

6. No Activation 

The MLP has a total of 3 layers. There is ReLU activation after every layer, except the last. 

The two-dimensional output vector is clipped in the range of [0,1] for each value and scaled 

by monitor resolution to give 2D pixel coordinates that correspond to a location on the user’s 

screen (this calculation is considered during back propagation). 

 
5 Gaze Tracking, antoinelame. GitHub Repository: https://github.com/antoinelame/GazeTracking 
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IV. DATA & TRAINING 

 

Figure 3: Data collection setup. 

 Data required for training is obtained via a computer application. When the user starts 

the software, a target on a blank background appears on the screen (see Figure 3). As the user 

looks at the center of the target while moving their head to different positions, the software 

takes multiple images with the camera. Looking at the same target from different positions 

introduces flexibility to the data that will allow the network to track the user’s gaze from 

various positions. Once an image is taken, it is passed onto the prior module to obtain face 

landmark and gaze data. If the user’s eyes are closed or the tracker is unable to extract data, a 

new image is taken. Data from the prior module is combined with the coordinates of the target 

to create a data pair 𝒫𝑖 = {𝑋 ∈ [0,1]30, 𝑌 ∈ [0,1]2} where 𝑋 is the data output from the prior 

module and 𝑌 is the target coordinates. Once 100 data pairs have been obtained, the target 

moves to a new point on the screen to repeat the process. The screen is divided into 9 points 
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(3 × 3) that helps to enable tracking from anywhere on the screen. After data from all points 

has been obtained, it is combined into a dataset with 900 examples 𝒟 = {𝒫1, 𝒫2, ⋯ , 𝒫900}. 

 The MLP is trained using the dataset and MSE loss. For every epoch, a random portion 

of the data is selected (called a ‘batch’). For every data pair (𝒫𝑖) in the batch, 𝑋 is input into 

the MLP. It then returns a prediction, 𝑌̂. We want this prediction to be as close to the ground-

truth (𝑌) as possible. Therefore, we use the MSE loss function, 𝑀𝑆𝐸(𝑌̂, 𝑌), and back propagate 

to optimize the MLP. After the MLP has been optimized for every data pair in the batch, the 

learning rate, 𝜂, is decreased using the exponential learning rate scheduler. See Section V for 

details on the exact parameters used. 

 When back propagating, instead of using Eq. (3, 4), I use a specialized optimizer called 

‘Adam’6. It is an algorithm that optimizes the MLP in a way that is more efficient. It still uses 

back propagation, but the equation for updating the weight and bias is a little more complicated 

than what I presented. 

V. EXPERIMENTAL RESULTS AND EVALUATION 

Table 1: Training Parameters 

 

Parameter Value 

𝜂0 0.008 

𝛾 0.9999 

𝛽1 0.9 

𝛽2 0.999 

𝜖 10−8 

𝑇 25000 

𝐵 128 

 
6 Kingma, Diederik P., and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, 29 Jan. 2017. 

arXiv.org, http://arxiv.org/abs/1412.6980. 
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Parameter Definitions for Table 1 

𝜂0 

𝛾 

𝛽1 

𝛽2 

𝜖 

𝑇 

𝐵 

 

initial learning rate 

exponential learning rate decay rate 

(Adam) exponential decay rate 1 for moment estimate 

(Adam) exponential decay rate 2 for moment estimate 

(Adam) term added to the denominator to improve numerical stability 

number of epochs 

batch size 

 

 

Figure 4: Trial 1 results of training the MLP with parameters from Table 1. Loss (vertical axis) versus 

epoch (horizontal axis).  

The loss encountered during trial 1 training is graphed in Figure 4. At first, the MLP 

learns quickly, and over time slows down. The graph is not exactly smooth, as there are some 

perturbations, which are most likely the result of the existence of multiple minima. During 

training, the MLP sometimes overshoots a minimum and enters a different one. By 

transitioning from one minimum to the other, the loss increases in between. These increases 
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correspond to some of the sudden increases seen in the graph. The results indicate that the MLP 

converges after about 25000 epochs, ~1 hour on an Nvidia GTX 1050 graphics card. The final 

average loss of the MLP is ~8.7 ∙ 10−3. The parameters I used for trial 1 are given in Table 1.  

After the MLP was trained, I tested its performance. The evaluation of the test is mostly 

qualitative. The MLP was able to predict the general location of where the user was looking at 

on the screen. However, it could not accurately pinpoint the exact location where the user was 

looking. This could be due to numerous reasons, including: 

• Insufficient data 

• Lack of camera quality 

• Not enough training 

• Training parameters that are not perfect 

The following may be done to improve accuracy: 

• Collect more data by taking more photographs and/or increasing the number of target 

positions (e.g., from (3x3) to (5x5)). 

• Utilize a higher definition camera (although this may not be viable for individuals who 

do not have access to one) 

• Increase the number of epochs to train the MLP and see how that affects accuracy. 

• Adjust training parameters in various ways to see if there are more suitable ones. 

VI. CONCLUSION 

VI.A Drawbacks and Applications 

 The technique I have developed for on-screen gaze tracking has potential to be used by 

many individuals who are in need. This technique, if developed upon, could remove the 

necessity for excess gadgets for on-screen eye tracking, as the only device that is required is a 
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single webcam and a computer. Such a program can be provided to people online as standalone 

software, making it extremely accessible. The applications include but are not limited to: 

“mouse-free” control of a computer to help disabled individuals to use a computer, and the 

control of games and software. As of now, the technique does not provide pinpoint accuracy, 

only a general position of the user’s gaze. However, accuracy may be increased by improving 

the method of data collection and perhaps the network architecture itself. Nonetheless, the 

technique offers usability and a new opportunity for those who need it. 

VI.B Thoughts 

 Throughout the development of this project, I have encountered many obstacles. I had 

to learn to create a user interface from scratch and find ways to make data collection and neural 

network training computationally efficient. I spent hours and weeks training different NN 

architectures, comparing and contrasting to see which one was more efficient. This was an 

exhaustive process because training can only progress as fast as the computer can handle. 

Knowing this led to me attempting to find an architecture and training parameters that sufficed 

both accuracy and efficiency to show that my technique is viable. If I had the proper resources, 

I may have perhaps been able to train a more performant network. 

 In the future I would recommend the trial of different neural network types and the 

utilization of a camera with good resolution. Additionally, the data collection method may be 

improved by animating the target instead of using stationary targets. Currently the biggest 

limitation my technique faces is lack of preciseness. This is likely able to be improved by 

making the aforementioned improvements, prolonging training time and collecting more data. 

However, the training time could be a limitation in and of itself, as the user must wait for 

training to finish in order to use the program. Furthermore, this technique does not generalize 

to all users, it can only be tailored for a single individual. Therefore, another improvement may 
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be the development of a technique that involves training the network once, such that it does not 

need to be re-trained in order to be used by a new individual. If such a generalizable technique 

is developed, it would be significantly more accessible due to the user not needing to re-train 

the network, hence a faster set-up time. 


