
How does Different activation functions affect the

performance and accuracy of a neural network

Word Count: 5000 words

1

Contents

1 Abstract 3

2 Background knowledge 3

3 Aim 4

4 What is machine learning 4

5 How does neural networks work 4
5.1 Layers of a neural network . 4
5.2 Neurons . 6
5.3 Cost function . 6
5.4 How does cost function in this paper work 7
5.5 Gradient descent . 7
5.6 Backwards propagation . 9
5.7 How does backwards propagation work 9

6 Activation functions 11
6.1 How do activation functions work 11
6.2 Common problems caused by different activation functions 11
6.3 How to compare different activation functions based on their per-

formance and accuracy . 12
6.4 ReLU . 12
6.5 Logistic function / Sigmoid function 13
6.6 Arctan . 13
6.7 Tanh . 13

7 Brief explanation of a neural network using a real example 14

8 Data collected from the experiment 16
8.1 ReLU . 16
8.2 Logistic function . 17
8.3 Arctan . 18
8.4 Tanh . 19

9 Conclusion Applications and Limitations 19
9.1 limitations . 20

10 References 21

11 Appendix 22
11.1 ReLU Graphs . 22
11.2 Logistic function Graphs . 24
11.3 Arctan . 26
11.4 Tanh . 28

2

1 Abstract

In this paper the effects of different activation functions on neural networks are
argued

2 Background knowledge

1. vanishing gradient problem: vanishing gradient problem is caused by the
derivatives of functions going to 0 as the input goes to infinity. In order
to teach a neural network we use a back propagation algorithm. In the
back-propagation algorithm we use the first derivative of the activation
function. This situation doesn’t become a problem if the input of the
function doesn’t reach too high of a value this is the case in shallow net-
works but if the network is a deep neural network the input value can
reach a very low value therefore the value of the derivative goes to 0.

2. Perceptrons: perceptrons can be thought of as little functions or calcula-
tors. The perceptrons are found in layers. A perceptron is connected to
each and every perceptron in the previous layer. Every connection has a
weight associated with it. To calculate the value of a single perceptron
we need to multiply the weight-which can be negative of positive- with
the value of the perceptrons -in the previous layer- if the value we get
is a lower than a set value decided -threshold- the perceptron outputs a
0 and if it is higher than said threshold the perceptron will output a 1.
This property of the perceptrons makes them similar to boolean logic since
both can only have 2 states either fully open (1) or fully closed (0). This
feature -while it eases the calculations limits what can be achieved with
perceptrons.

3. Matrix: Matrixes are sets of numbers that are arranged in columns and
lines. Each value has the name “element”

4. Vector:Vectors are mathematical objects that both have a value and a
direction. They are made up from components. Each component has one
direction and the vectorial sum of these components make up our vector

5. Epoch: Epochs are small subsets of the training data. They are used in
order to lower the computational power required. Rather than running
the learning algorithm for each individual data point we can run it for the
average of an epoch thus reducing the number of calculations drastically.

6. Training and Test sample: In neural networks a given data set is usu-
ally divided into 2 parts: one for training the network and the other for
testing the networks accuracy on a never before seen data group-in or-
der to be unbiased- These sets are called training sample and test sample
respectively

3

7. Hadamard product: Hadamard product is used when we have 2 vectors
that are in the same dimensions. The operator multiplies each component
of a vector with its equivalent in the other vector and when it does this
process for each component the resultant numbers create a vector of same
dimension

8. Transpose operator: Transpose operator is a operator that turns a list of
values into a vector which’s elements are the elements of that set

3 Aim

In this paper I will briefly explain neural networks and how they work then i will
explain different types of activation functions that can be used in these neural
networks and finally i will compare different activation functions using the same
data set so that i can see which activation function is the most effective and
efficient

4 What is machine learning

Machine learning is the general term referring to the ways machines(computers
can learn). The most common way is neural networks and deep neural net-
works(these two methods are essential the same but deep neural network utilises
more hidden layers so that it can process data which can be overwhelming for
a shallow neural network) All of the ways a machine learn depends on the data
its fed because of this machine learning is directly connected to mathematics
especially statistics since what computers actually do is interpolating based on
the available data

5 How does neural networks work

5.1 Layers of a neural network

Neural networks consist of 3 main layers, these are called input layer, hidden
layer(s) and output layer. What first and last layer does can be inferred directly
from their name

Input layer: input layer is where the data available is fed to the neural net-
work. This data can range from the population of a city to the number of car
crashes happening in a junction. The key thing about this layer is that it needs
a numerical value and not a word. For some applications words and adjectives
can be turned into numerical values for example colour can be represented by
relative contributions of red green and blue. This layer can have as many neu-
rons as there are parameters.
Output layer: Output layer is the final layer in the network. This layer tells the
output of the neural network to the user. This layer has the same number of

4

neurons as the number of possible outcomes. This layer also outputs numerical
values just like the input layer but in order to get useful data we could asso-
ciate the neurons to possible outcomes. For example we can say that neuron 1
represents cars and train our network to output a 1 in the first neuron and 0 in
all the other neurons when it sees a car. When this network sees a new image
which probably has a car in it; it will output a value in near proximity to 1 in
the first neuron in the output layer. So what we did was assign a non numerical
word to a numerical value
Hidden layer(s): hidden layer is the place where magic happens. Hidden layers
are the layers where the calculations and backpropagation algorithm happen.
The term hidden comes from the fact that the user does not directly have con-
trol over these layers and thus usually does not see these layers. There can be
more than one hidden layer in a network. The number of layers depends on
the complexity of the problem and computational limitations. Usually neural
networks with more than 1-2 hidden layers are called deep neural networks.

5

5.2 Neurons

Neurons can be taught as little calculators. Each has a connection to the other
neurons in the previous layer and a weight associated with them.In order to
calculate the value of a certain neuron first we need to multiply the weight of a
connection with the value of the neuron corresponding to that connection. Sec-
ondly we need to sum all the connection and value multiplications and add bias
to that sum. After we calculate this sum (for simplicity this sum will be called
z from now on) we need a function to map the numbers we reach(real numbers)
to a defined range so that numbers don’t get exponentially big or small. For
that mapping we use activation functions. Unlike previously discussed percep-
trons neurons -with the help of activation functions- can get intermediate values
which enable them to be partially open in this sense they are more like the fuzzy
logic

These operations can be done using matrices and vectors
We can write activations of the neurons in l st layer as al which is a vector
we can also write weights of the neurons in the l + 1th layer as a vector bl+1

and when we use dot product to multiply these 2 vectors we get a single value
that is equal to z. After we calculate z for every neuron in the l + 1th layer
we can create a vector consisting of these values and call it zl+1and if we put
this vector in our activation function we would get an vector consisting of the
activations of neurons in the l+1th layer. We might want to chose this method
over the normal way of calculating activations because many neural network
optimised programming languages/libraries such as python have very efficient
linear algebra libraries that accelerates our neural networks

5.3 Cost function

Cost function is a function that measures how accurate the network was in the
last training data. It takes the weights and biases of the network as an input
and it uses them to assess whether the value calculated by the neuron is close
to the desired value or not. It does this by first assessing the final output of the
network and comparing every output neuron’s activations to what they should

6

be(this process is done during the training/learning phase of the network so the
output that is desired is known.) When the cost function decides what each
neuron should have as its activation then it goes a layer back and repeats the
same process

5.4 How does cost function in this paper work

In this paper I have used a quadratic cost function. This function is not a must
so other networks created for different purposes can use different cost functions
which will have different results compared to this paper.

(c(w, b)) ≡ 1
2nΣx∥|y(x)− a∥|2

In this equation y(x) represents the desired activation and a represents the value
our network got represent the length of the vector (as discussed previously all
the variables are in the form of vectors since it is easier for the computer to
compute) and we square the length of the vector so that we always get a non
zero term. This property of our cost function will help us better understand
how gradient descent works.

5.5 Gradient descent

To understand gradient descent better we can use a simpler case(our small ie
shallow network has 13000 variables rather than imagining a 13000 dimensional
plane we would consider a case for which we have 2 inputs(x and y) and a single
output (z)which will give us a total of 3 dimensions which we can easily imag-
ine) We can think that there is a ball on our 3 dimensional plane. Common
sense and physics tells us that a ball would fall to the lowest place it can reach
without exceeding its initial height. In other words it will always go in the −z
direction.

7

3 dimensional x,y,z plane as an example

The movement of our ball based on small change in x and y can be approx-
imately equal to

∆z ≈ ∂z
∂x ×∆x+ ∂z

∂y ×∆y

This expression can be written in vector form as -which will simplify notation-

∆z ≈ ∇z ·∆x

Where ∆z is the vector which components are the partial derivatives of
the cost function and ∆x is the vector consisting of small increases to each
variable. We want to make ∆z negative in order to achieve this goal we must
decide a ∆x which will always make ∆z always negative. A good option is to
make ∆x = −α∇z where α is a small positive number which is called learning
rate. When we use −α∇ as ∆x we get ∆z ≡ −α∇z2 which is always negative
since the square of a number is always non negative and if we multiply it by
a negative number we should either get a negative number or 0 so we have
achieved our goal. (It is important to say that must be sufficiently small since
∆z is approximately equal to the partial derivatives times change in variable.
It also must be sufficiently big so that the learning rate of our network is not

8

too low. In complicated networks this value is changed based on the current
gradient vector but in this paper -for simplicity- it is kept constant)

While ∆z is said to be dependent on 2 variables it doesn’t have to be; all the
equations remain same for m number of variables so this method called gradient
descent can be used in our neural network with 13000+ variables

The following equation tells us that our network learns by changing the
weights and biases. How we change these values are as follows

X → X
′
= X − α∇C

The values we should assign to the weights and biases are old values minus
learning rate times partial derivative of the cost function with respect to the
variable we are changing

In order to change every weight and bias we must calculate its partial deriva-
tive which is a demanding task therefore a method called stochastic gradient
descent is used. For this method a big enough(with m variables) “mini-batch”
is chosen. The average gradient of this mini batch is approximately equal to the
gradient of the whole batch(with n variables) therefore we can use that value
instead of calculating the gradient for each weight and bias. This is described
in the equation below.

Σm
j=1∇zj

m ≈ Σn
j=1∇zj

n

5.6 Backwards propagation

Backwards propagation is a fundamental part of a neural network. As explained
neural networks work by forwarding information to layers ahead. This is called
feed forward. When the network is in the learning phase it also needs to evalu-
ate the results it got with the actual results. For this phase we use an algorithm
called backwards propagation. This algorithm helps us to back propagate the
error in the output layer to the hidden layers.

We said that the gradient descent algorithm adjusts our weights and biases.
As said this algorithm uses 2 parameters a learning rate αand the gradient vec-
tor of the cost function ∇C. Back propagation algorithm allows us to calculate
the gradient vector.

5.7 How does backwards propagation work

Back propagation is basically calculating partial derivatives of the cost function
with respect to weights and biases (∂C∂w and ∂C

∂b). Calculating these values re-
quires an intermediary value that we call error(this error is not the same thing
as the network’s whole error. This error is each neuron’s ability to affect the

9

network performance while the other error refers to the percentage of the test
images that were incorrectly classified by the network).

We can say that a change in a neuron will affect the network by partial
derivative of the cost function with respect to that neuron activation times
change in that neuron activation. This is described in the equation below.

∂C
∂z ∆z ≈ ∆C

From above we can deduce that if the partial derivative of a neuron is big it
will have a bigger effect on the cost function and vice versa. Based on this we
can call this partial derivative the error of that neuron (δ)

δ ≡ ∂C
∂z

Back propagation will allow us to compute δ for each layer and relate those to
∂C
∂w and ∂C

∂b . For this purpose we have a total of 4 equations. For descriptive
purposes we assume that the sigmoid function is used as the activation function.
This is not a requirement since none of the sigmoid specific features of the
function is used. So where sigmoid σ function and its derivative σ

′
any other

function can be used.
First equation: Calculating error in the (output) final layer:

σ = ∂C
∂a σ

′
(Z)

a is the activation of the function
σ is the error

σ
′
(Z)is the derivative of the activation function evaluated at the neurons value

This equation uses one of the basic properties of calculus: the chain rule. We
defined δas the partial derivative of the cost function with respect to the value
of that neuron. But the neuron’s value doesn’t directly affect the cost function;
rather it affects the activation of the neuron(via sigmoid function) and that af-
fects the cost function so we multiply their derivatives in order to get the effect
of the value of the neuron in the cost function. Essentially what we do is

∂C
∂a

∂a
∂z = ∂C

∂Z

Calculating the error in the last layer is not demanding since the network has
already calculated z while processing the image. Also the partial derivative of
the cost function can be easily computed While it dependents on the activation
function calculating its derivative is not -comparatively- that much work

This equation is using the derivative of the activation function. This can
lead to the problem called the “vanishing gradient problem”. Further discussion
about this can be found at the section: Common problems caused by different
activation functions.

10

his equation can be written using vectors in the form
δ = ∇C ⊙ σ′(Z)
Second equation: Calculating error in the nth layer using the error in the n+1th
layer

δn = ((wn+1)δn+1 ⊙ σ′(Z)
wn+1 is the weight matrix

δn+1 error of the n+ 1th layer
σ′(Z) derivative of the activation function calculated at Z

In this equation we are propagating the error we found in the nth layer to the
n− 1th layer hence the name backwards propagation. This equation first takes
the error calculated at the n+1th layer as its input it also take the weights for
the n+1th layer this equation applies the weight matrix to the errors and after
that it takes the Hadamard product of the vector calculated and the derivative
of the activation function calculated at Z. This gives us the error in the nth layer

As we can now find out the error in the last layer and we can propagate the
error in any. We can now calculate the error in every layer by first calculating
the error in the output layer and then calculating the error in the layer before
that using the second equation and doing this process of back propagation until
we reach the first layer.

While the other 2 equations are just as important as the first and second one.
Since the scope of this paper is activation functions and the first 2 equations
concerts activation functions (and also because of word limit issues) other 2 will
not be discuss

6 Activation functions

6.1 How do activation functions work

Activation functions are functions that map the output calculated value of a
neuron(z) to a real number. They usually have a range of [-1,1] or [0,1] but
some activation functions have ranges extending to ± infinity. We use these
functions to standardise our output and prevent our numbers going to infinity
in a deep neural network.

6.2 Common problems caused by different activation func-
tions

Different activation functions have different properties. In a neural network we
need to calculate the derivative of the activation function at a lot of different
values. Because of this some activation functions use a linear activation value
for positive numbers and a negative value for negative numbers. While this

11

makes calculating the derivative trivial since it is a constant it also means that
the numbers exponentially get larger as the network gets deeper. On the other
hand of the spectrum we have activation functions that limit their output to a
range of [-1,1] while the maximum value these functions have is 1 they suffer
from a different problem(this one is much more common since the computing
power of modern computers allows them to deal with very big numbers). As said
these activation functions have a maximum value of 1 but take all real numbers
as input thus they must have a horizontal asymptote at -1 and 1. As the input
gets bigger and the output approaches 1 the gradient of the function goes to
0. As said in back-propagation equation 1 and 2 we use the derivative of the
activation function in our algorithm and it affects the learning rate. But since
the value of the derivative goes to 0 the learning rate goes to 0 (the network is
called saturated at this point) and the network stops learning. This problem is
seen mostly in deep networks with thousands of inputs and hundreds of layers
and it is called vanishing gradient problem

6.3 How to compare different activation functions based
on their performance and accuracy

In order to compare different activation functions we need a numerical value
assigned to their performance. We can calculate this value using either by di-
viding their total number of errors by the total number of examples in the test
group which gives us the error percentage. Another way we can use to calculate
the efficiency of an activation function is the time required to complete and
learn a set number of training samples. This time will give us an insight about
the complexity of the activation function. This time being long means that the
activation function is comparatively more complex. One final thing we can do
is divide the train data set into little groups called epochs and after a network
finishes training in a given epoch we could try it using a group of test samples.
We can do this process repeatedly until we run out of training samples. While
doing this we can plot the error percentage over epoch numbers. Finally we
can get the gradient of the graph we make. This gradient will leave us with the
learning rate of our network

6.4 ReLU

Rectified linear unit or ReLU is a piece-wise defined activation function com-
monly used in deep neural networks. It maps R → R+ + {0}. It can be
represented as f(x) = max(0, x). It outputs 0 when the input is - and it out-
puts the input value when the input is positive it can be written explicitly as
f(x) = {0, x < 0;x, x > 0}. ReLU is relatively a new invention in the world
of machine learning but its benefits are worthwhile. First of all it eases the
computation required by a lot since in the interval where it is continuous(R+)
its first derivative is 1. It also solves the “vanishing gradient problem” since

12

it does not have an asymptotic upper and lower bound meaning the derivative
doesn’t go to 0 as the input goes to 0 or ∞

6.5 Logistic function / Sigmoid function

The Sigmoid (logistic) function is a continuous function that maps R → (0, 1).
It is continuously differentiable. It’s derivative is always non negative but as
the input gets larger the derivative goes to 0. limx→∞

dy
dx → 0 Because of this

learning can stop(vanishing gradient problem). Logistic function can be written

as 1
1+e−x it has a derivative of e−x

(1+e−x)2 It has asymptotes at y=0 and y=1

6.6 Arctan

Arctan is a continuous function which maps R → (−π
2 ,

π
2) It is commonly used

in trigonometry to evaluate an angle whichs tangent value is known. It does not
have a vertical asymptote but unlike ReLU it has horizontal asymptotes which
makes it susceptible to “vanishing gradient problem” it can be represented as
f(x) = arctan(x) It has a derivative of 1

1+x2 which is not as easy to calculate

as that of ReLU which is a constant and since as limx→∞
dy
dx → 0 which causes

the vanishing gradient problem

6.7 Tanh

Hyperbolic tangent or tanh is a trigonometric function defined in hyperbolic ge-
ometry it is defined sinh

cosh It mapsR → (−1, 1) It is continuously differentiable and

just like logistic function. its derivative goes to 0 as x → ±∞ limx→±∞
dy
dx → 0

Its advantage over logistic function is that it maps low values close to -1 which
in turn change those values from indifferent to negatively affecting. Tanh can

be represented as e2x−1
e2x+1 and it has a derivative of 1− tanh2

13

7 Brief explanation of a neural network using a
real example

For simplicity in this part I will define a very basic network and using that
network I will explain how feedforward and backpropagation works also I will
explain what is loss and accuracy based on real numerical values for this net-
work
First we need to define how many neurons and layers our network has. Since
this is a demonstrative model I chose an input layer, a hidden layer and an
output layer. All of these layers consist of 1 neuron. This shallow of a network
surely won’t work as good as deep network but since all the calculations will
remain same this is a good demonstrative model
After we decide what our network’s architecture would look like we need to de-
fine initial weights and biases of the network. Initial weights and biases can be
randomly chosen so I wrote a little code that chose these values randomly for
us. Also we need to choose a learning rate which can also be randomly chosen
Initial Weights Biases and learning rate:
learning rate = 0.1
Weight1: [[0.4703668]]
Weight2: [[0.02151528]]
Bias1: [[0.08962905]]
Bias2: [[0.14936365]]
While in normal networks we change the input and therefore the output with
each iteration this type of network won’t be able to adapt to new inputs and
outputs due to its limited number of neurons in the hidden layer therefore In
this example I kept the Input and output value the same. In normal applications
of neural networks this will lead to overfitting which would not be a desirable
consequence.
Input value(X): [[0.89259312]]
Desired output value (y = X2):[[0.79672248]]
Feed forward
In this section of the network we will -as the name suggests- feed the values we
get in the input layer forward till we reach the output layer. As said this is a
demonstrative model so I will be using a simple sigmoid function as my activa-
tion function but with any other function the procedure will remain unchanged.
a2 the activation of the hidden layer Activation function(X ×Weight1 + bias1)
a3 the activation of the output layer Activation function(X ×Weight2 + bias2)
Numerical values from this example
a2 = σ(0.89259312× 0.4703668 + 0.08962905) = 0.6246834456269417
a3 = σ(a2 × 0.02151528 + 0.14936365) = 0.5406113113176128

After we calculated activation of the output layer we would need to calculate
the Cost of the network. In this example in order to keep calculations simple
I used the difference of the calculated value and the expected value. This may
cause problems in a real neural network since this can lead to negative Cost

14

which may lead to weights and biases being adjusted in the wrong direction.

Cost = y − a3
Numerical values from this example
Cost = 0.79672248-0.54061131=0.25611117

Back-Propagation
Error In the output layer = Cost × σ

′
(a3)

Error In the hidden layer = Error In the output layer ×weight2 × σ
′(a2)

Numerical values from this example

Error In the output layer = 0.25611117×0.24835072139306394 = 0.06360539382632163
Error In the hidden layer = 0.06360539382632163×0.02151528×0.23445403838659348
=0.0003208475047169335

Finally we would need to update the values of the weights and biases based
on the error we calculated

we would need to change the weight in n+1 st layer by an×Error In the
an+1×learning rate

Numerical values from this example
0.02151528 → 0.02151528 + 0.6246834456269417×0.06360539382632163×0.1 =
0.0254886036575885
0.4703668→ 0.4703668+0.89259312×0.0003208475047169335×0.1 = 0.470395438627528

We do the backpropagation and changing the values until we get satisfied
we the accuracy we got

Loss can be described as the difference between the value we wanted and the
value we had. For example if we calculated a value of 0.4 while the value we
needed was 1.0 we would have a loss of 0.6

0.1= %60. Accuracy is the percentage
of true outputs. Test accuracy is the percentage of correct guesses the network
got in the test sample.

15

8 Data collected from the experiment

This paper is written in latex Due to its limitations graphs need to be small but
full sized graphs can be found at the appendix section

8.1 ReLU

epoch
number

time
taken for
epoch

time per
step

loss change in
loss

accuracy change in
accuracy

batch size

1 12s 24ms 20,39% - 93,94% - 469
2 11s 24ms 5,66% 14,73% 98,26% 4,32% 469
3 11s 24ms 4,02% 1,64% 98,79% 0,53% 469
4 11s 24ms 2,94% 1,08% 99,06% 0,27% 469
5 11s 24ms 2,23% 0,71% 99,30% 0,24% 469
6 11s 24ms 1,82% 0,41% 99,43% 0,13% 469
7 11s 24ms 1,58% 0,24% 99,50% 0,07% 469
8 11s 24ms 1,20% 0,38% 99,62% 0,12% 469
9 11s 24ms 1,15% 0,05% 99,61% -0,01% 469
10 11s 23ms 0,79% 0,36% 99,74% 0,13% 469

Table 1: ReLU data table

Figure 1: loss-epoch number Figure 2: accuracy-epoch number

Figure 3: change in loss-epoch number
Figure 4: change in accuracy-epoch
number

test accuracy :99,22%

16

8.2 Logistic function

epoch
number

time
taken for
epoch

time per
step

loss change in
loss

accuracy change in
accuracy

batch size

1 1s 5ms 109,46% - 74,34% - 128
2 1s 5ms 35,84% 73,62% 90,51% 16,17% 128
3 1s 4ms 23,01% 12,83% 92,29% 1,78% 128
4 1s 4ms 22,93% 0,08% 93,39% 1,10% 128
5 1s 4ms 19,79% 3,14% 94,28% 0,89% 128
6 1s 4ms 17,47% 2,32% 94,43% 0,15% 128
7 0s 4ms 15,54% 1,93% 95,45% 1,02% 128
8 0s 4ms 13,83% 1,71% 95,98% 0,53% 128
9 1s 4ms 12,28% 1,55% 96,46% 0,48% 128
10 0s 4ms 11,07% 1,21% 96,86% 0,40% 128

Table 2: Sigmoid data table

Figure 5: loss-epoch number Figure 6: accuracy-epoch number

Figure 7: change in loss-epoch number
Figure 8: change in accuracy-epoch
number

test accuracy :96,3%

17

8.3 Arctan

epoch
number

time
taken for
epoch

time per
step

loss change in
loss

accuracy change in
accuracy

batch size

1 1s 6ms 42,59% - 87,76% - 128
2 1s 6ms 26,11% 16,48% 92,58% 4,82% 128
3 1s 6ms 21,64% 4,47% 93,94% 1,36% 128
4 1s 7ms 17,96% 3,68% 94,94% 1,00% 128
5 1s 6ms 15,09% 2,87% 95,68% 0,74% 128
6 1s 6ms 12,99% 2,10% 96,32% 0,64% 128
7 1s 6ms 11,20% 1,79% 96,83% 0,51% 128
8 1s 6ms 9,67% 1,53% 97,26% 0,43% 128
9 1s 6ms 8,65% 1,02% 97,51% 0,25% 128
10 1s 6ms 7,63% 1,02% 97,82% 0,31% 128

Table 3: Arctan data table

Figure 9: loss-epoch number Figure 10: accuracy-epoch number

Figure 11: change in loss-epoch number
Figure 12: change in accuracy-epoch
number

test accuracy :97,25%

18

8.4 Tanh

epoch
number

time
taken for
epoch

time per
step

loss change in
loss

accuracy change in
accuracy

batch size

1 3s 6ms 27,35% - 91,88% - 469
2 3s 6ms 12,31% 15,04% 96,31% 4,43% 469
3 2s 5ms 8,24% 4,07% 97,46% 1,15% 469
4 2s 5ms 5,78% 2,46% 98,27% 0,81% 469
5 2s 5ms 4,28% 1,50% 98,70% 0,43% 469
6 2s 5ms 3,32% 0,96% 99,02% 0,32% 469
7 2s 5ms 2,52% 0,80% 99,29% 0,27% 469
8 2s 5ms 1,78% 0,74% 99,53% 0,24% 469
9 2s 5ms 1,51% 0,27% 99,61% 0,08% 469
10 2s 5ms 1,18% 0,33% 99,67% 0,06% 469

Table 4: Tanh data table

Figure 13: loss-epoch number Figure 14: accuracy-epoch number

Figure 15: change in loss-epoch number
Figure 16: change in accuracy-epoch
number

test accuracy :97,81%

9 Conclusion Applications and Limitations

Data collected From the experiment show that ReLU has the best overall test
accuracy[99,22%]. This is followed by tanh[97,81%] arctan[97,25%] and finally
sigmoid function[96,30]. Difference between these values may seem small but by
the standards of computer science and neural networks ReLU is miles ahead of
the competition. The reason for this difference can be stated as ReLU being a
linear function and therefore not facing the vanishing gradient problem. When
we look at the time taken for the network to train a different picture appears.

19

While ReLU and Tanh had bigger training data sets compared to arctan and
sigmoid functions, ReLU needed significantly more time than all the other acti-
vation functions. This result was unexpected since one of the benefits of ReLU
is its easy to compute derivatives. These unexpected results may be caused by
bad programming since the code for the other functions needed to change to
allow for a different activation function. Since the data set used for these models
is comparatively very small any results related to time can be ignored. Another
thing that was expected and can be seen from the results is that the accuracy
of the first epoch is the greatest in the ReLU and follows the same trend as the
accuracy and decreases as you go from Tanh to arctan to Sigmoid

As expected from the theoretical work and seen from the experimental results
the best performing activation function is found to be the ReLU. This result
is probably caused by it being not affected by the vanishing gradient problem.
While this is true this does not mean that ReLU is the best activation func-
tion period. As with anything in life every situation is unique and may require
a different activation function for example a time sensitive and error tolerant
situation may deploy the sigmoid function. So while this paper agrees that
vanishing gradient problem will affect even the most shallow networks, it does
not say that only ReLU like functions should be used rather it says vanishing
gradient problem must be considered along with other factors when choosing a
activation function for a neural network

9.1 limitations

1. The network that was tested in this paper is a very shallow network that
will affect both the computation time and the extent of problems caused
by vanishing gradient problems. In order to be more accurate further re-
searchers could test activation functions on networks with different depths.

2. The network used in this paper is an image classification network. Some
activation functions work better than others in some use cases therefore
in order to be more accurate further researchers could test different types
of networks.

3. While the time taken for the network to run is not discussed the ex-
perimental values are still given. While this may not cause problems in
comparative papers since the experiment is always run in the same com-
puter if it was a qualitative analysis of the length of time required Big O
notation would have been better since it does not get affected by change
of hardware

20

10 References

1. 3D plots. (n.d.). Retrieved March 25, 2023, from https://www.qtiplot.com/doc/manual-
en/x730.html

2. DeepAI. (2019, May 17). Relu. DeepAI. Retrieved March 25, 2023, from
https://deepai.org/machine-learning-glossary-and-terms/relu

3. DeepAI. (2019, May 17). Vanishing gradient problem. DeepAI. Retrieved
March 25, 2023, from https://deepai.org/machine-learning-glossary-and-
terms/vanishing-gradient-problem

4. Nielsen, M. A. (1970, January 1). Neural networks and deep learning. Re-
trieved March 25, 2023, from http://neuralnetworksanddeeplearning.com/

5. Sharma, S. (2022, November 20). Activation functions in neural networks.
Medium. Retrieved March 25, 2023, from https://towardsdatascience.com/activation-
functions-neural-networks-1cbd9f8d91d6: :text=tanh%20is%20also%20sigmoida
l%20(s%20%2D%20shaped). text=The%20advantage%20is%20that%20the,its%20deriv
ative%20is%20not%20monotonic.

21

11 Appendix

11.1 ReLU Graphs

22

23

11.2 Logistic function Graphs

24

25

11.3 Arctan

26

27

11.4 Tanh

28

29

